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A consistent finding in the Stroop literature is that congruency effects (i.e., the color-naming latency difference
between words presented in incongruent vs. congruent colors) are larger for mostly-congruent items (e.g., the
word RED presented most often in red) than for mostly-incongruent items (e.g., the word GREEN presented
most often in yellow). This “item-specific proportion-congruent effect” might be produced by a conflict-
adaptation process (e.g., fully focus attention to the color when the word GREEN appears) and/or by a more
general learning mechanism of stimulus-response contingencies (e.g., respond “yellow” when the word
GREEN appears). Under the assumption that limited-capacity resources are necessary for learning stimulus-
response contingencies, we examined the contingency-learning account using both Stroop and nonconflict
(i.e., noncolor words written in colors) versions of a color identification task while participants maintained a
working memory (WM) load. Consistent with the contingency-learning account, WM load modulated
people’s ability to learn contingencies in the nonconflict task. In contrast, across 3 experiments, WM load did
not affect the item-specific proportion-congruent effect in the Stroop task even though we employed a design
(the “2-item set” design) in which contingency learning should be the dominant process. These results imply
that the item-specific proportion-congruent effect is not merely a byproduct of contingency learning but a
manifestation of reactive control, a mode of control engagement that may be especially useful when WM
resources are scarce.
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Stroop

In the Stroop task (Stroop, 1935), participants are instructed to
name the ink color of a word while ignoring the word itself. The
term “congruency effect” refers to the finding that responses to
congruent items (e.g., the word RED in red color, RED,,) are
typically faster (and often more accurate) than responses to incon-
gruent items (e.g., the word RED in blue color, RED,,,.). Among
the numerous investigations of the mechanisms involved in resolv-
ing and managing interference in this task (for a review, see
MacLeod, 1991), manipulating the proportion of congruent items
is an approach which has gained increasing research interest. The
typical result of these proportion-congruent manipulations is that
situations in which the proportion of congruent items is high elicit
larger congruency effects than do situations in which the propor-
tion of congruent items is low, a finding known as the “proportion-
congruent effect” (e.g., Crump, Gong, & Milliken, 2006; Jacoby,
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Lindsay, & Hessels, 2003; Logan & Zbrodoff, 1979; for a review,
see Bugg & Crump, 2012).

The classic proportion-congruent paradigm involves manipulating
the proportion of congruent items in a list-wide fashion, allowing the
comparison of performance on a list composed mainly of congruent
items (a mostly-congruent list) with performance on a separate list
composed mainly of incongruent items (a mostly-incongruent list). As
noted above, larger congruency effects are generally obtained for the
mostly-congruent list than for the mostly-incongruent list (e.g., Logan
& Zbrodoff, 1979). The traditional explanation that has been offered
for these proportion-congruent effects posits that attention to the
task-relevant (i.e., the ink color) and task-irrelevant (i.e., the written
word) dimensions is adjusted in response to the frequency of conflict
from the task-irrelevant dimension (the control account: e.g., Botvin-
ick, Braver, Barch, Carter, & Cohen, 2001; Bugg, Jacoby, & Toth,
2008). A situation in which conflict is frequent (i.e., a mostly-
incongruent list) poses regular demands for the cognitive control
system to adapt to the situation by directing attention to the relevant
dimension. Interference from the irrelevant dimension will thus be
minimized. On the other hand, a situation in which conflict is infre-
quent (i.e., a mostly-congruent list) biases attention toward the irrel-
evant dimension. As a result, interference from the irrelevant dimen-
sion on the few incongruent items will be especially problematic, a
situation which typically results in a large congruency effect.

More recently, however, Jacoby, Lindsay, and Hessels (2003)
designed a new version of this paradigm that poses a challenge to
the idea that proportion-congruent effects are due to the imple-
mentation of a list-wide, expectancy-based process as posited by
the traditional control account. What Jacoby et al. (2003) demon-



e of its al

not to be diss:

4
=

2008 SPINELLI, KRISHNA, PERRY, AND LUPKER

strated was an item-specific proportion-congruent effect. In their
manipulation (the “two-item set” design), two color words (e.g.,
RED and BLUE) were presented mainly in their congruent color
(mostly-congruent items, e.g., RED,., appearing more often than
RED,,,..) and two other color words (e.g., GREEN and YELLOW)
were presented mainly in an incongruent color (mostly-
incongruent items, e.g., GREEN,,,,, appearing more often than
GREEN,,..,). The two sets of words were not permitted to cross
(e.g., GREEN and YELLOW never appeared in either red or blue
ink), and the two sets were intermixed such that in the list as a
whole congruent and incongruent items were equally probable.
Similar to the list-wide proportion-congruent effect, an item-
specific proportion-congruent effect emerged, with a larger con-
gruency effect for the mostly-congruent items than for the mostly-
incongruent items. Because congruent and incongruent items were
equally probable in the list as a whole, whatever process was being
used that led to the item-specific proportion-congruent effect could
not have been one that was based on the overall congruency
proportion of the list. Rather, this process must have been an
item-specific one, based on the congruency proportion assigned to
each item in the list, that is, a process that is initiated in response
to the nature of the specific item appearing on a given trial.

The Control Account of the Item-Specific
Proportion-Congruent Effect

The presence of an item-specific proportion-congruent effect
has led researchers in the area of cognitive control to reconsider
the original idea that adaptation to conflict frequency, or conflict
adaptation, is the result of a single process of conflict-triggered
adjustment (e.g., Botvinick et al., 2001). Although a more general
conflict-adaptation account could potentially explain both list-
wide and item-specific proportion-congruent effects (Bugg &
Crump, 2012), the two effects are now thought to involve distinct
processes of control engagement (Gonthier, Braver, & Bugg,
2016). A useful framework for interpreting these effects is the dual
mechanisms of control (DMC) account (Braver, 2012; Braver,
Gray, & Burgess, 2007; see also Bugg & Crump, 2012), an
account that, although somewhat more general, has many com-
monalities with an earlier account of Stroop interference (Kane &
Engle, 2003).

The DMC framework proposes that control is engaged via two
operating modes, proactive and reactive (roughly equivalent to
Kane & Engle’s, 2003, notions of “goal maintenance” and “con-
flict resolution,” respectively). The proactive mode involves ef-
fortful, sustained maintenance of task-relevant items or goals in
working memory (WM). For example, in the context of the Stroop
task, participants might effortfully maintain the goal of naming
colors and ignoring words throughout the task. Although such a
process could be used in any situation in the Stroop task, its use
would be favored in situations which repeatedly reinforce task
relevance, for example, in a mostly-incongruent list in the list-wide
proportion-congruent manipulation. In this situation, because fre-
quent conflict is expected between the word and the color, indi-
viduals would be prone to engage in a proactive process that
minimizes interference from the word by constantly maintaining
focus on the color-naming goal.

In contrast, the reactive mode relies on the stimuli in the
environment for reactivation of task-relevant items or goals. The

reactive mode can take more than one form. A basic form of
reactive control is a process whereby the task goal is reactivated
upon detection of a conflict between task-relevant and task-
irrelevant dimensions (e.g., the color-naming goal is reactivated
upon presentation of an incongruent word-color pair; Braver,
2012). This process would be favored in situations which rarely
reinforce task relevance, for example, a mostly-congruent list in
the list-wide proportion-congruent manipulation. In this situation,
because conflict between the word and the color is not expected,
individuals would be prone to engage in a reactive process
whereby the color-naming goal is frequently neglected and is only
retrieved upon presentation of the infrequent incongruent words.

Reactive control can also take the form of a process that uses
information about the stimulus to select a specific control process
for dealing with that stimulus. This process is especially relevant
in item-specific proportion-congruent manipulations. The reason is
that these manipulations put participants in a situation in which
they can use associations between words and their congruency to
select the control process (e.g., relaxed vs. focused attention to the
color) that would be best to apply to the presented word. Because
those associations can only be used after the word has been
presented, the use of those associations would require a form of
reactive control. In this form of reactive control, early processing
of specific words would regulate recruitment of appropriate con-
trol processes (Shedden, Milliken, Watter, & Monteiro, 2013; for
a computational model of this mechanism, see Blais, Robidoux,
Risko, & Besner, 2007). Specifically, the recognition of a mostly-
incongruent word, for example, GREEN, may initiate a reactive
control process favoring inhibition of word reading, with the result
being reduced interference for this type of word. On the other
hand, the recognition of a mostly-congruent word, for example,
RED, may initiate a reactive control process leading to relaxed
attention, thus encouraging word processing in spite of the color-
naming goal. The result will be large interference in the few
instances in which the mostly-congruent word does conflict with
the color (e.g., the word is RED but its color is blue rather than its
usual red color).

Two aspects of the DMC account are worth noting. First,
proactive and reactive modes of control are assumed to be partially
independent, as demonstrated by their distinct neural signatures
(e.g., Burgess & Braver, 2010; De Pisapia & Braver, 2006; Marini,
Demeter, Roberts, Chelazzi, & Woldorff, 2016) and the fact that
experimental manipulations can bias use of one or the other mode
(for a review, see Braver, 2012). However, this account concedes
that successful behavior likely depends on a mixture of proactive
and reactive control engagement. For example, in the item-specific
proportion-congruent paradigm, reliance on a reactive process
regulating control in an item-specific manner would not necessar-
ily prevent other processes from being invoked, although such
processes may not be particularly encouraged by the task context.
In particular, because in a typical item-specific proportion-
congruent manipulation congruent and incongruent items are
equally probable in the list as a whole, a proactive process of
maintaining the task goal should not be encouraged to the same
extent as it should be in a situation in which incongruent items
are very frequent (i.e., a mostly-incongruent list in a list-wide
proportion-congruent manipulation). Nonetheless, at least some
individuals in an item-specific proportion-congruent manipulation
might prefer to engage in this sort of proactive process instead of
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applying, or while concurrently applying, a reactive process of
adaptation to item-specific conflict frequency. In sum, it is rea-
sonable to hypothesize that reactive control may be the more
prominent process, but not necessarily the only process that indi-
viduals could employ in an item-specific proportion-congruent
manipulation.’

The second aspect worth nothing about the DMC account is that
this account does not necessarily negate the possibility that non-
control processes may also have an important role in phenomena
such as the item-specific proportion-congruent effect. Indeed,
Bugg and colleagues (Bugg, 2015; Bugg, Jacoby, & Chanani,
2011; Bugg & Hutchison, 2013) have proposed that the item-
specific proportion-congruent effect reflects the action of a
control-based process only when this effect is obtained in circum-
stances that prevent learning of associations between task-
irrelevant information and responses (i.e., contingency learning,
reviewed in the next section). When the experimental situation
favors learning of contingencies, the item-specific proportion-
congruent effect has been argued to mainly reflect the action of
that (noncontrol) learning process instead.

The Contingency-Learning Account of the
Item-Specific Proportion-Congruent Effect

Although control accounts have had good success in explaining
data in interference tasks, recent years have witnessed a growing
concern among researchers about the validity of conflict adapta-
tion as an explanation for proportion-congruent effects (Schmidt,
2013b; Schmidt, Notebaert, & van den Bussche, 2015). This
concern is motivated by the realization that, in speeded tasks,
responding might be influenced by learning associations, or con-
tingencies, between a stimulus and a motor response as opposed to
learning associations between a particular word and a control
process (Schmidt, Crump, Cheesman, & Besner, 2007). In non-
conflict color identification tasks, contingency learning had been
demonstrated by the finding that color identification is faster for a
frequent word-color pair (= high-contingency item, e.g., the word
BRAG presented in green color 75% of the time) than for an
infrequent word-color pair (= low-contingency item, e.g., the
word BRAG presented in yellow color 25% of the time). This
effect, which is found for color words and color-unrelated words
alike (Hutchison, 2011; Schmidt et al., 2007; see also Musen &
Squire, 1993), is thought to reflect the fact that participants im-
plicitly learn that specific words predict specific color responses
(e.g., BRAG predicts green; Schmidt et al., 2007; see also Forrin
& MacLeod, 2017; Lin & MacLeod, 2018).

Contingency learning provides a potential alternative explana-
tion for proportion-congruent effects since manipulating the pro-
portion of congruent items in the Stroop task typically involves
altering the frequency of specific word-color pairs as well. Con-
sider an item-specific proportion-congruent manipulation as an
example. If the mostly-incongruent word GREEN appears most
often in yellow, individuals may learn to associate the word
GREEN with the (incongruent) yellow response. Conversely, if the
mostly-congruent word RED appears most often in red, that would
allow participants to learn that RED predicts the (congruent) red
response. Crucially, if frequent word-color pairs elicit faster re-
sponses, relatively fast responding to the high-contingency incon-
gruent item GREEN will lead to a relatively small congru-
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ency effect for mostly-incongruent items, whereas fast responding
to the high-contingency congruent item RED,., will lead to a
relatively large congruency effect for mostly-congruent items.
Similar observations can be made for list-wide proportion-
congruent manipulations (Schmidt, 2013b). This explanation,
known as the contingency-learning account of proportion-
congruent effects, suggests that learning of word-color contin-
gencies, rather than adaptation to conflict frequency via control
processes, might be responsible for the difference in the mag-
nitude of congruency effects that is typically found in
proportion-congruent manipulations in the Stroop task (Schmidt
& Besner, 2008). Essentially, the item-specific proportion-
congruent effect would have “everything to do with contin-
gency” (Schmidt & Besner, 2008, p. 514).

Is Control Involved in the Item-Specific
Proportion-Congruent Effect?

The control account and the contingency-learning account of
proportion-congruent effects are fundamentally different in that
the former invokes an interference-driven mechanism of conflict
adaptation whereas the latter argues for a facilitative mechanism
where conflict plays no role in modulating the congruency effect.
Although conflict-adaptation and contingency-learning mecha-
nisms are not necessarily mutually exclusive and could be inte-
grated within a common theoretical framework (Abrahamse,
Braem, Notebaert, & Verguts, 2016; Egner, 2014), in recent years
there has been a debate about whether contingency learning alone
may be a sufficient explanation for proportion-congruent effects,
that is, whether these effects can be explained by an account that
does not require invoking a mechanism of adaptation to conflict
frequency at all (e.g., Atalay & Misirlisoy, 2012, 2014; Bugg,
2014; Bugg et al., 2011; Bugg & Hutchison, 2013; Hazeltine &
Mordkoff, 2014; Hutchison, 2011; Schmidt, 2013a, 2013b, 2013c;
Schmidt & Besner, 2008; Schmidt et al., 2015). More recently,
however, some evidence has emerged suggesting that list-wide
proportion-congruent effects do persist when controlling for both
contingency learning (Bugg, 2014; Bugg & Chanani, 2011; Gon-
thier et al., 2016; Hutchison, 2011; Spinelli & Lupker, 2020b;
Spinelli, Perry, & Lupker, 2019) and learning of list-wide temporal
expectancies, another nonconflict learning mechanism thought to
contribute to generating list-wide proportion-congruent effects
(Cohen-Shikora, Suh, & Bugg, 2019; Spinelli et al., 2019). These
results support the claim that humans do have access to a proactive
mechanism of adaptation to list-wide frequency of conflict (for
counterarguments, see Schmidt, 2013c, 2014, 2017).

With respect to the item-specific proportion-congruent effect, how-
ever, the situation is a bit different. The fundamental difference
between the control-based account and a contingency-learning ac-

! This reasoning does not imply that proactive control could explain the
item-specific proportion-congruent effect because, as noted, this effect
must depend on a process initiated in response to specific items. If a
proactive process of maintaining the color-naming goal were used for both
mostly-congruent and mostly-incongruent items, this process would pre-
sumably produce a reduced congruency effect in the task in general, but
would not cause differential congruency effects for the two types of items.
Thus, although proactive control can be used concurrently with reactive
control, only reactive control can provide an explanation for the item-
specific proportion-congruent effect (Gonthier et al., 2016).
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count of the item-specific proportion-congruent effect is that the
former assumes that participants in an item-specific proportion-
congruent manipulation associate words with control processes (e.g.,
inhibit word reading upon presentation of the mostly-incongruent
word GREEN) while the latter assumes that they associate words with
specific responses (e.g., predict a yellow response upon presentation
of the mostly-incongruent word GREEN). While both mechanisms
might be used, researchers who have tried to directly dissociate the
two accounts have mostly found support for contingency-learning
processes (Hazeltine & Mordkoff, 2014; Schmidt, 2013a; but see
Spinelli & Lupker, 2020a). For example, Schmidt (2013a) constructed
a Stroop task in which item-specific conflict frequency and contin-
gency learning were manipulated partially independently. Using this
design, he was able to compare mostly-congruent words and mostly-
incongruent words on what were “contingency matched” incongruent
trials. For example, the color blue was a low-contingency and equally
probable color for both the mostly-congruent word RED and the
mostly-incongruent word GREEN. According to the control-based
account, because mostly-congruent words should induce relaxed at-
tention whereas mostly-incongruent words should induce focused
attention to the color, the mostly-congruent word RED should pro-
duce more interference than the mostly-incongruent word GREEN
when those words are presented in blue. However, performance on
mostly-congruent and mostly-incongruent words was equivalent
when those words appeared in the critical incongruent colors, sug-
gesting that no conflict-adaptation process was in use. Based on these
results, Schmidt (2013a) concluded that contingency learning is the
sole source of item-specific proportion-congruent effects, with con-
flict adaptation playing no role at all.

As noted, this conclusion has gained at least some credence even
among proponents of control accounts (Bugg, 2015; Bugg &
Hutchison, 2013; Bugg et al., 2011). Specifically, those research-
ers appear to have conceded that contingency learning, rather than
control-based processes, does determine the modulations of the
congruency effect that are observed in the item-specific
proportion-congruent manipulation originally employed by Jacoby
et al. (2003), that is, the two-item set design. A control-based
process would be used only in specific circumstances, for example,
when contingency learning is discouraged by including words
being associated with no specific response in the task (e.g., in a
four-item set design in which mostly-incongruent words appear
equally frequently in each of four colors, one congruent and three
incongruent), or when the relevant dimension (i.e., the color),
rather than the irrelevant dimension (i.e., the word), acts as the
potent signal for conflict frequency (Bugg, 2015; Bugg et al.,
2011; Bugg & Hutchison, 2013). Notably, the situation examined
by Jacoby et al. (2003) would not be one of those circumstances
(although see Hutcheon & Spieler, 2014, for evidence in support of
a conflict-adaptation explanation of the item-specific proportion-
congruent effect in Jacoby et al.’s 2003 two-item set design).

The Present Research

The present research was an attempt to reexamine the conclusion
that the item-specific proportion-congruent effect in Jacoby et al.’s
(2003) two-item set design is due to contingency learning by using a
different approach than the ones used thus far. As noted above, the
process of learning word-response associations is typically examined
in a color identification task where noncolor words are presented

mainly in one specific color (e.g., the word SHOP presented more
often in red than in blue; Schmidt et al., 2007; Schmidt, De Houwer,
& Besner, 2010). Schmidt, De Houwer, and Besner (2010) had
participants perform this nonconflict color identification task while
maintaining a low (e.g., remember two digits) or high (e.g., remember
five digits) WM load. Crucially, they only found a significant
contingency-learning effect for the low-load group. For example, in
their Experiment 2, Schmidt et al. (2010) obtained a 107-ms
contingency-learning effect for participants performing the color iden-
tification task with a low WM load. In contrast, participants who
performed the color identification task with a high WM load were not
only overall slower but also showed a smaller and nonsignificant
28-ms contingency-learning effect. Further, an impact of word-
response contingencies was not observed when participants were
required to carry a high WM load even when those contingencies had
been successfully learned in an earlier block in which participants
were required to carry a low WM load (Experiment 3). Based on these
results, Schmidt et al. (2010) concluded that, even though it might be
an implicit process, contingency learning is a resource-dependent
process, such that limited-capacity resources are necessary for both
learning and using contingencies.

Importantly, because contingency learning is independent from
the interference caused by the stimuli being used (Levin & Tzel-
gov, 2016), the process of learning contingencies should have the
same capacity limitations regardless of whether the stimuli are
color or noncolor words. Based on the premise that contingency
learning is the cause of the item-specific proportion-congruent
effect, particularly in Jacoby et al.’s (2003) two-item set design,
what Schmidt et al.’s (2010) results imply is that participants
performing the Stroop task while carrying no WM load (i.e., the
standard situation) or a low WM load should show a regular
item-specific proportion-congruent effect, whereas little or no
item-specific proportion-congruent effect would be expected for
participants who perform the Stroop task while carrying a high
WM load similar to the one Schmidt et al. used. In contrast, finding
equivalent item-specific proportion-congruent effects in high, low,
and no WM load situations would be problematic for the
contingency-learning account.

It is worth noting that obtaining an item-specific proportion-
congruent effect in a high WM-load condition would also be prob-
lematic for theories of cognitive control that assume that successful
implementation of any control process is critically dependent on
available attentional resources (e.g., Baddeley, Chincotta, & Adlam,
2001; Baddeley & Hitch, 1974). These types of accounts, just like the
contingency-learning account, would also seem to predict that in-
creasing WM load should lead to no item-specific proportion-
congruent effect (i.e., the congruency effect should be the same for
mostly-congruent and mostly-incongruent items). As will be de-
scribed just below, however, the same would not be true for control
accounts such as the DMC account (Braver, 2012; Braver et al., 2007;
see also Kane & Engle, 2003) because accounts of this sort appear to
predict that a higher WM load would not interfere with use of reactive
control processes, that is, the type of processes that would support a
mechanism of adaptation to item-specific (as opposed to list-wide)
conflict frequency, although it may interfere with proactive control
processes, that is, top-down control processes that are based on
situational expectancies.

As noted, at least in some circumstances, the item-specific
proportion-congruent effect has been claimed to result from the ap-
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plication of reactive control (Bugg, 2015; Bugg et al., 2011; Bugg &
Hutchison, 2013), with recognition of a mostly-incongruent word
leading to a focus of attention onto the task-relevant (color) dimension
and recognition of a mostly-congruent word leading to a relaxation of
attention to that dimension. What is important to note is that, accord-
ing to the DMC account, there is no reason that WM demands would
impact this type of reactive control in the same way that they would
impact proactive control, as the two control processes appear to be
dissociable. For example, in an fMRI memory study, Speer, Jacoby,
and Braver (2003) found that an expected low WM load showed an
activation pattern consistent with the idea that participants were using
a proactive process of maintaining study items in memory in prepa-
ration for the upcoming probe. An expected high WM load, in
contrast, showed an activation pattern consistent with the use of a
reactive process, whereby study items were not actively maintained
and the probe was used as a retrieval cue instead. Similar dissociations
were obtained in behavioral and neuroimaging research analyzing
individual differences in WM resources, typically defined in terms of
WM capacity (Burgess & Braver, 2010; Hutchison, 2011; Kane &
Engle, 2003).

In general, control accounts which distinguish proactive and
reactive control processes appear to suggest that reactive control is,
in fact, relatively easily implemented when WM resources are
scarce (Braver, 2012; Braver et al., 2007). Importantly, what these
ideas then imply concerning the impact of WM load on an item-
specific proportion-congruent manipulation would seem to be
somewhat different from the predictions made by a contingency-
learning account. Specifically, assuming, as control accounts such
as the DMC do, that the item-specific proportion-congruent effect
is due, in whole or in part, to a reactive control process (i.e.,
adaptation to item-specific conflict frequency), no reduction in the
proportion-congruent effect should be observed with increasing
‘WM load (regardless of WM capacity). The reason is that having
fewer available WM resources should make reactive control at
least as prominent a process as it is in normal circumstances (i.e.,
when WM resources are not taxed by a concurrent task), with the
result being a good-size proportion-congruent effect. In contrast,
as discussed, the contingency-learning account would predict that
if available WM resources are low due to a high concurrent WM
load, contingency learning cannot take place, leading to a very
reduced proportion-congruent effect.

The present research involved a number of experiments inves-
tigating the role of WM load in contingency-learning and item-
specific proportion-congruent effects. Using vocal responses to the
colors, Experiments 1A and 1B sought to replicate Schmidt et al.’s
(2010) findings in the nonconflict color identification task and to
expand them to the Stroop task using a two-item set design, that is,
the design that presumably favors use of contingency learning
instead of conflict-adaptation processes (Bugg, 2014; Bugg &
Hutchison, 2013). To preview, we were not able to replicate the
original pattern in the nonconflict color identification task (i.e.,
contingency-learning effects did not diminish as WM load in-
creased). Therefore, Experiments 2A and 2B used manual re-
sponses to the colors as well as providing feedback, as in the
original article (Schmidt et al., 2010), a situation in which we were
able to replicate Schmidt et al.’s (2010) findings for the noncon-
flict color identification task. However, we did not find a similar
reduction in the item-specific proportion-congruent effect in the
Stroop task. Finally, Experiments 3A and 3B replicated and ex-

panded the previous results using a within-subject design. In
addition, WM capacity for individuals in the no-load group was
measured in Experiments 3A and 3B in order to explore the ideas
that lower WM resources are associated with either a decrease in
contingency-learning effects, as proposed by the contingency-
learning account, or an increased reliance on reactive control, as
proposed by the DMC account (Braver, 2012; Braver et al., 2007).

Experiment 1A and 1B (Vocal Responses)

Would taxing cognitive resources impair contingency learning
in the nonconflict, as well as the Stroop, color identification task?
To answer this question, in Experiment 1A participants were
presented with contingency-biased noncolor words (e.g., the word
SHOP presented 75% and 25% of the time in red and blue,
respectively), whereas in Experiment 1B participants were pre-
sented with both mostly-congruent color words (e.g., the word
RED presented 75% and 25% of the time in red and blue, respec-
tively) and mostly-incongruent color words (e.g., the word
GREEN presented 75% and 25% of the time in yellow and green,
respectively) intermixed in the same list. In both experiments, a
two-item set design was used, that is, each word appeared in two
colors only although, overall, four colors and four words were
used. As mentioned, this design was used by Jacoby et al. (2003)
and is supposed to promote learning of word-response contingen-
cies as the dominant process for performance (Bugg, 2014; Bugg
& Hutchison, 2013). In addition, in both experiments, one third of
the participants performed the color identification task with no
memory load (no-load group). The other two thirds performed both
the color identification task and a concurrent WM task which
required holding in memory two digits (the low-load group) or five
digits (the high-load group), as in Schmidt et al. (2010).

Colors were responded to vocally and participants received no
feedback on their performance, whereas Schmidt et al. (2010) had
participants respond to colors via button pressing and provided
them with feedback (i.e., participants were warned when an error
was made). However, Schmidt et al. (2010) provided no indication
that response modality or feedback should matter in terms of the
impact of WM load on contingency learning: As long as cognitive
resources are properly taxed, one should obtain a reduction in
contingency-learning effects under load.

Method

Participants. Sixty-one participants took part in Experiment
1A (nonconflict color identification task) and another 60 took part
in Experiment 1B (Stroop task). These sample sizes were deter-
mined based on Schmidt et al.’s (2010) Experiment 2, in which 60
participants were tested. In Experiment 1A, one participant was
removed because of an excessive number of errors and null re-
sponses (above 25%). In both experiments, the final 60 partici-
pants were equally distributed across the no-, low-, and high-load
groups in each experiment (20 participants per group in each
experiment). Participants were all students at the University of
Western Ontario, aged 18-29 years and had normal or corrected-
to-normal vision. Their participation was compensated with course
credit or $10.

Materials. Four color-unrelated words (SHOP, CULT,
BRAG, WIDE) and four color words (RED, BLUE, GREEN,
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YELLOW) were used as carrier words and four colors (red [R:
255; G: 0; B: 0], blue [R: 0; G: 112; B: 192], green [R: 0; G: 176;
B: 80], and yellow [R: 255; G: 255; B: 0], corresponding to “red,”
“blue,” “green,” and “yellow” in the standard DMDX palette) were
used as targets. Participants in Experiment 1A only saw color-
unrelated words and participants in Experiment 1B only saw color
words. The nature of the word-color combinations used is repre-
sented in Tables 1 and 2. Both noncolor and color words were
divided into two sets, one set (e.g., SHOP and CULT for Exper-
iment 1A, RED and BLUE for Experiment 1B) was only presented
in red and blue ink colors, the other set (e.g., BRAG and WIDE for
Experiment 1A, GREEN and YELLOW for Experiment 1B) was
only presented in green and yellow ink colors. In Experiment 1A,
the frequency of word-color combinations was manipulated so that
each word was paired with one of the colors 75% of the time (thus
creating a high-contingency item) and with the other color 25% of
the time (thus creating a low-contingency item). In Experiment 1B,
one set of words (e.g., RED and BLUE) was paired with the
congruent color 75% of the time and with the incongruent color
25% of the time (i.e., serving as mostly-congruent items), while
the other set of words (e.g., GREEN and YELLOW) was paired
with the congruent color 25% of the time and with the incongruent
color 75% of the time (i.e., serving as mostly-incongruent items).
Assignment of words to the frequent and the infrequent color was
counterbalanced across participants. Overall, congruent and incon-
gruent items were equally probable in Experiment 1B. Both Ex-
periment 1A and Experiment 1B included 192 trials.

Procedure. Participants were randomly assigned to the no-
load, low-load, or high-load group. Each trial began with a fixation
symbol (“+7) displayed for 250 ms in the center of the screen
followed by a 250-ms blank screen. For participants in the low-
and high-load groups, this blank screen was followed by a set of
two random digits (low-load; e.g., 3, 2) or five random digits (high
load; e.g., 3, 2, 4, 1, 7), presented with three spaces between each
digit for 2000 ms. In the next display, a colored word appeared in
uppercase Courier New font, 14 point, displayed for 2,000 ms or
until the participant’s response, which was recorded with a micro-
phone connected to the testing computer. Participants were in-
structed to name the color of the word as quickly and as accurately
as possible while ignoring the word itself. Following an 800-ms
blank screen, another set of two digits (for the low-load group) or
five digits (for the high-load group) was presented flanked by two
arrows on each side (e.g., >> 3 2 <<) for 2,000 ms or until the
participant’s response. In this probe set of digits, either a randomly
selected digit in the memory set was changed to a new random
digit or none of the digits were changed. Participants were required
to press the right shift key if the probe set of digits was identical

Table 1
Template for the Frequency of Color-Word Combinations in
Experiment 1A

Word
Color SHOP CULT BRAG WIDE
Red 36 12
Blue 12 36
Green 36 12
Yellow 12 36
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Table 2
Template for the Frequency of Color-Word Combinations in
Experiment 1B

Word
Mostly-congruent Mostly-incongruent
words words
Color RED BLUE GREEN YELLOW

Red 36 12
Blue 12 36
Green 12 36
Yellow 36 12

to the memory set of digits and the left shift key if the two sets of
digits were different. Trials requiring “same” and “different” re-
sponses were equally probable, and this manipulation was orthog-
onal to the manipulations involving colored words (e.g., low- and
high-contingency items appeared on trials requiring a “‘same”
response as often as on trials requiring a “different” response, etc.).

Participants in the no-load group were only presented with the
colored words, which were presented right after the fixation sym-
bol. Stimuli were presented against a medium gray background (R:
169; G: 169; B: 169). No feedback was provided. The 192 trials
were presented in two blocks of 96 trials each with a self-paced
pause in the middle. The order of trials within each block was
randomized. Prior to starting each block, participants performed a
practice session of 16 trials mirroring the frequency of word-color
combinations in that block. The experiment was run using DMDX
(Forster & Forster, 2003) software. This research was approved by
the Research Ethics Board of the University of Western Ontario
(Protocol #108956).

Results

The waveforms of responses in the color identification task were
manually inspected with CheckVocal (Protopapas, 2007) to deter-
mine the accuracy of the response and the correct placement of
timing marks. Prior to the analyses, invalid trials due to technical
failures and responses faster than 300 ms or slower than the time
limit on either the color identification task or the WM task (ac-
counting for 1.7% and 1.9% of the data points in Experiments 1A
and 1B, respectively) were discarded. Trials on which participants
responded incorrectly on the WM task (which accounted for 3.6%
and 8.1% of the data points in the low- and high-load groups in
Experiment 1A, and 4.0% and 9.2% of the data points in the low-
and high-load groups in Experiment 1B) were discarded as well.”
Latency analyses were conducted only on trials in which the
response in the color identification task was also correct.”

2 We excluded those trials to avoid including trials in the analyses in
which participants had failed to maintain the memory load. For these and
the following experiments, we also conducted parallel analyses in which
the trials on which participants made an error on the WM task were not
excluded. The results were virtually identical in all cases.

3 In addition to the regular analyses on raw RTs, for these and the following
experiments, we also conducted parallel analyses on z-score transformed RTs
(Faust, Balota, Spieler, & Ferraro, 1999) to determine if the WM-load effects of
interest would emerge in terms of proportional changes from baseline. Again, the
results were virtually identical in all cases.
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Different analyses were performed for Experiment 1A and Ex-
periment 1B due to the different nature of the stimuli (noncolor vs.
color words) and design. For Experiment 1A, a 2 (contingency:
low vs. high, within-subjects) X 3 (WM load: no vs. low vs. high,
between-subjects) ANOVA was conducted. For Experiment 1B,
the design of the ANOVA was a 2 (congruency: congruent vs.
incongruent, within-subjects) X 2 (item type: mostly-congruent vs.
mostly-incongruent, within-subjects) X 3 (WM load: no vs. low
vs. high, between-subjects).* In addition to traditional null-
hypothesis significance testing analyses, we also performed Bayes
factor analyses when a theoretically important null effect was
obtained in order to quantify the evidence supporting the presence
versus the absence of that effect. These analyses were performed
in R Version 3.5.1 (R Core Team, 2018) using the BayesFactor
package, Version 0.9.12-4.2 (Morey & Rouder, 2018) by com-
paring the model without the effect of interest (interpreted as the
null hypothesis H,) and the model with that effect (interpreted as
the alternative hypothesis H,). One million iterations were used to
evaluate each model. The result of this comparison was BF,, with
BF,, <1 suggesting evidence in support of H, (i.e., the presence
of the effect), whereas BF,; > 1 suggesting evidence in support of
H, (i.e., the absence of the effect) (BF,,, = 1 would suggest equal
evidence for the two hypotheses). Jeffreys’s (1961) classification
scheme (as reported in adjusted form by Lee & Wagenmakers,
2013) was used to help interpret the size of the Bayes factor. The
mean reaction times (RTs) and error rates are presented in Tables
3 and 4 for Experiments 1A and 1B, respectively. For this and for
the following experiments, we report how we determined our
sample size, all data exclusions (if any), all manipulations, and all
measures in the study (see above for this information for Experi-
ments 1A and 1B; Simmons, Nelson, & Simonsohn, 2012). The
raw data and the scripts used for the analyses are also publicly
available at https:/osf.io/rtnw2/.

Experiment 1A (nonconflict color identification task).

RTs. Both the main effects of contingency (high-contingency
faster than low-contingency), F(1, 57) = 8.40, MSE = 510, p =
.005, mj = .128, and WM load, F(2, 57) = 13.45, MSE = 32,148,
p < .001, m2 = .321, were significant. Post hoc 7 tests using the
Tukey’s HSD adjustment for multiple comparisons revealed that

Table 3

Mean RTs and Error Rates (and Corresponding Standard
Errors) for Experiment 1A—Vocal Nonconflict Color
Identification Task

Contingency RTs Error rates

No load

High 589 (16) .010 (.003)

Low 601 (18) .013 (.005)

Contingency effect 12 .003
Low load

High 786 (35) .005 (.002)

Low 801 (37) .009 (.003)

Contingency effect 15 .004
High load

High 743 (30) .005 (.001)

Low 752 (28) 004 (.002)

Contingency effect 9 —.001

Note. RTs = reaction times.

2013

the no-load group was faster than both the low-load group (p <
.001) and the high-load group (p = .001), but the low-load and the
high-load groups did not differ from one another (p = .487).
Importantly, contingency and WM load did not interact (F(2,
57) = .19, MSE = 510, p = .825, m> = .007), with equivalent
contingency learning effects in the no- (12 ms), low- (15 ms), and
high-load groups (9 ms). The Bayes factor for the comparison
between the model with the interaction and the model without it
was BF,; = 6.43 = .83%, meaning that the data were 6.43 times
more likely to occur under the hypothesis of no interaction than
under the hypothesis of an interaction. In Jeffreys’s (1961) clas-
sification scheme, this value would suggest “moderate” evidence
for the absence of the interaction.

Error rates. No effect reached significance (all Fs < 1).

Experiment 1B (Stroop task).

RTs. There were main effects of congruency (congruent faster
than incongruent), F(1, 57) = 99.64, MSE = 3754, p < .001, 11% =
.636, and WM load, F(2, 57) = 9.94, MSE = 46,916, p < .001,
M7 = .259. Post hoc  tests using the Tukey’s HSD adjustment for
multiple comparisons revealed that the no-load group was faster
than both the low-load group (p = .022) and the high-load group
(p < .001), but the low-load and the high-load groups did not
differ from one another (p = .222). The only significant interaction
was that between congruency and item type, F(1, 57) = 56.18,
MSE = 1765, p < .001, T],Z, = .496, indicating that a regular
item-specific proportion-congruent effect was found, with a larger
congruency effect for mostly-congruent items (120 ms) than for
mostly-incongruent items (38 ms). There was no three-way inter-
action between congruency, item type, and WM load, however,
F(2, 57) = .230, MSE = 1765, p = .795, ‘r]f, = .008, suggesting
that the item-specific proportion-congruent effect was equivalent
in all load groups. The Bayes factor, BF,, = 7.14 = 6.27%,
indicated “moderate” evidence for the absence of the three-way
interaction.

Error rates. There were main effects of congruency (congru-
ent more accurate than incongruent), F(1, 57) = 33.39, MSE =
001, p < .001, m = .369, item type (mostly-incongruent more
accurate than mostly-congruent), F(1, 57) = 12.71, MSE = .001,
p =.001,m} = .182, and WM load, F(2, 57) = 6.68, MSE = .001,
p = .002, M7 = .190. Post hoc 7 tests using the Tukey’s HSD
adjustment for multiple comparisons revealed that the low-load
group was more accurate than the no-load group (p = .002), but
did not differ significantly from the high-load group (p = .065).
The no-load and the high-load groups did not significantly differ
from one another either (p = .389). An overall item-specific

4 For this and the following Stroop experiments (Experiments 2B and
3B), we conducted another set of analyses using contingency (high vs. low)
as a factor instead of item type (mostly-congruent vs. mostly-incongruent).
Mostly-congruent congruent words and mostly-incongruent incongruent
words would be the high-contingency items; mostly-incongruent congruent
words and mostly-congruent incongruent words would the low-
contingency items. This type of analysis offers a direct parallel to the
analysis for the nonconflict color identification task because it allows an
evaluation of the interaction between contingency and WM load in both
types of tasks. To preview the results, in the Stroop task (Experiments 1B,
2B, and 3B), the interaction between contingency and WM load (corre-
sponding, statistically, to the three-way interaction between congruency,
item type, and WM load in the analysis with item type as a factor) never
approached significance.
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Table 4
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Mean RTs and Error Rates (and Corresponding Standard Errors) for Experiment 1B—Vocal

Stroop Task

RTs Error rates
Mostly-congruent ~ Mostly-incongruent ~ Mostly-congruent ~ Mostly-incongruent
Congruency items items items items

No load

Congruent 626 (17) 665 (23) .001 (.001) .008 (.006)

Incongruent 751 (25) 715 (18) 071 (.017) .024 (.007)

Congruency effect 125 .070 016
Low load

Congruent 726 (23) 757 (24) .001 (.001) .002 (.002)

Incongruent 855 (30) 794 (22) 011 (.006) .007 (.003)

Congruency effect 129 .010 .005
High load

Congruent 793 (33) 821 (30) .000 (.000) .005 (.004)

Incongruent 899 (29) 849 (32) 053 (.012) 017 (.007)

Congruency effect 106 .053 012

Note. RTs = reaction times.

proportion-congruent effect was obtained, as shown by the signif-
icant interaction between congruency and item type, F(1, 57) =
23.36, MSE = .001, p < .001, m? = .291. However, congruency
also interacted with WM load, F(2, 57) = 4.82, MSE = .001, p =
012, 1],2, = .145, and the three-way interaction was also significant,
F(2,57) = 4.08, MSE = .001, p = .022, 2 = .125.

To explore the interactions involving WM load, three additional
ANOVAs were performed comparing every pair of load groups.
Inspection of two-way interactions between congruency and WM
load revealed smaller congruency effects for the low-load group
(0.7%), than for either the no-load group (3.3%), F(1, 38) = 9.21,
MSE = .001, p = .004, 2 = .195, or the high-load group (2.4%),
F(1,38) = 7.56, MSE = .001, p = .009, m} = .166, whereas the
no-load and high-load groups did not differ from one another, F(1,
38) = .60, MSE = .002, p = .442, v = .016. Similarly, inspection
of the three-way interaction between congruency, item type, and
WM load revealed that the Congruency X Item Type interaction
for the low-load group differed from those for both the no-load,
F(1,38) = 7.08, MSE = .001, p = .011, m} = .157, and high-load
groups, F(1, 38) = 6.89, MSE = .000, p = .012, nﬁ = .153, but no
difference was found between the no-load and high-load groups,
F(1, 38) = .39, MSE = .001, p = .538, 3 = .010. Separate
analyses for each load group showed the reason for this interactive
pattern was that although significant Congruency X Item Type
interactions (with larger congruency effects for mostly-congruent
than mostly-incongruent items) were obtained for both the no-load,
F(1, 19) = 10.90, MSE = .001, p = .004, m7 = .365, and the
high-load group, F(1, 19) = 13.56, MSE = .001, p = .002, nf, =
416, there was no significant interaction for the low-load group,
F(1,19) = .82, MSE = .000, p = 376, > = .041. In general, it
appears that low-load group did behave somewhat differently than
the no-load and high-load groups. However, the most likely reason
for this difference is not that there is a nonmonotonic impact of
load on error rates but rather because of the very low number of errors
(less than 1%) committed by participants in the low-load group.

Discussion

Experiments 1A and 1B were attempts to replicate Schmidt et
al.’s (2010) findings from a nonconflict color identification task

and to extend those findings to the Stroop task using vocal re-
sponses. Surprisingly, however, the nonconflict color identifica-
tion task (Experiment 1A) showed no impact of WM load on the
magnitude of contingency effects, thus failing to replicate Schmidt
et al. in a task requiring vocal responses (as opposed to manual
responses as in Schmidt et al.’s, 2010 original article). Similarly,
WM load did not alter the magnitude of item-specific proportion-
congruent effects in the Stroop task (Experiment 1B) either with
the exception of the accuracy data for the low-load group in
Experiment 1B. That group produced no item-specific proportion-
congruent effect in the accuracy data but also very few errors in
general, suggesting that their accuracy data may reflect a floor
effect and, hence, should be interpreted extremely cautiously.
Although this pattern of results supports the idea that item-specific
proportion-congruent effects in the Stroop task and contingency-
learning effects in the nonconflict color identification task follow
the same pattern, potentially due to the fact that they are the result
of the same process, the fact that increasing WM load had no effect
on the size of contingency-learning effects is problematic for the
assumption that contingency learning depends on limited-capacity
resources, an assumption that is a basic premise of the present
research (Schmidt et al., 2010).

In trying to understand the pattern of data in Experiment 1, two
observations are in order. First, the WM load manipulation was
effective: Latencies in the color identification task were faster for
the no-load group than for the other groups (although this differ-
ence was compensated for by the drop in error rates for the
low-load group in Experiment 1B), and the high-load memory task
elicited more errors than the low-load memory task did. Given also
that the memory task was identical to the one Schmidt et al. (2010)
used, it appears that the reason for the discrepancy between the
present results and Schmidt et al.’s (2010) would have little to do
with the way we employed the WM-load manipulation.

Second, the contingency-learning effect in Experiment 1A, a
nonconflict color identification task requiring vocal responses, was
small (12 ms in the no-load condition) compared with what is
typically reported in the literature, where manual-responding ver-
sions of the task are prevalent (e.g., Schmidt et al., 2007, reported
a 60-ms contingency-learning effect with a design similar to the
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one used here using a manual-responding procedure). If response
modality is responsible for this difference, this specific pattern of
results is actually somewhat surprising based on findings from the
Stroop task suggesting that vocal responding may favor processing
of the word (Melara & Mounts, 1993; Virzi & Egeth, 1985). If
word processing is enhanced because of the use of the vocal
response mode, it would seem that contingencies between words
and responses should be learned more effectively, with the likely
result being, if anything, larger contingency-learning effects with
vocal than manual responding.

Reduced contingency-learning effects for vocal responding are
more easily reconciled with a view that emphasizes the role of
compatibility between relevant stimuli and responses in contin-
gency learning, that is, the degree to which responses map readily
onto relevant stimuli (Schmidt, 2018). According to this view,
although contingencies may be efficiently learned in both vocal
and manual responding situations, contingency learning will have
a smaller impact on performance when the requested response is
relatively compatible with the stimulus (e.g., a vocal response, an
overtrained response for a color) than when the requested response
is relatively incompatible with the stimulus (e.g., a keypress re-
sponse, an undertrained response for a color). The reason is that,
because contingency learning operates at the response stage
(Schmidt et al., 2007), this process will have a smaller window for
influencing behavior when stimuli can be quickly translated into
compatible (vocal) responses than when they are more slowly
translated into incompatible (manual) responses. As a result, con-
tingency learning will be reduced in a vocal responding situation.

Vocal-responding and manual-responding contingency-learning
paradigms, however, typically do not differ only in the type of
response that is required but also in whether responding is assisted
with feedback, which is often absent with vocal responses but
present with keypress responses. Indeed, a more complicated story
emerged when we tried to address this concern in a series of
nonconflict color identification tasks requiring vocal versus man-
ual responses with or without feedback (Spinelli, Perry, & Lupker,
2020). What we found was that the presence of feedback was
crucial in order to observe a larger contingency-learning effect for
manual than for vocal responding. When no feedback was given,
contingency-learning effects were equivalent across response mo-
dalities. Specifically, removing feedback reduced contingency
learning in manual responding to the size of the contingency-
learning effect in vocal responding but had no impact on the
(small) contingency learning in vocal responding.

Although the reasons for these results can be complex (for a
discussion, see Spinelli et al., 2020), the crucial message for the
present research is that manual responses with feedback might be
the only situation producing a good-size contingency-learning
effect. Other situations, including vocal responses without feed-
back (the situation of Experiments 1A and 1B) might produce such
small contingency-learning effects that observing a significant
reduction in their size might be challenging (for a similar point, see
Kinoshita, Mills, & Norris, 2018). Insofar as manual responding
plus feedback elicits larger baseline contingency-learning effects,
this situation might not only provide a more direct replication of
Schmidt et al. (2010), but also be more appropriate for testing the
idea that WM load impairs the process of learning contingencies.
This hypothesis provides the motivation for Experiments 2A and
2B.°
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Experiments 2A and 2B (Manual Responses)

Experiments 2A and 2B were identical to Experiments 1A and
1B, except that manual responding to colors along with feedback
on each trial was used. We reasoned that this change would not
only allow us to replicate Schmidt et al.’s (2010) original exper-
iment more closely but also increase the size of baseline
contingency-learning effects, thus providing a better opportunity to
observe modulations of such effects.

Method

Participants. Sixty-three participants took part in Experiment
2A (nonconflict color identification task) and another 63 took part
in Experiment 2B (Stroop task). In both Experiment 2A and
Experiment 2B, 3 participants were removed because of an exces-
sive number of errors and null responses (above 25%), leaving 60
participants equally distributed across the no-, low-, and high-load
groups in each experiment (20 participants per group in each
experiment). All were students at the University of Western On-
tario, aged 17-21 years and had normal or corrected-to-normal
vision. They received course credit for their participation.

Materials. The materials in Experiments 2A and 2B were
identical to those in Experiments 1A and 1B, respectively.

Procedure. The procedure was the same as in Experiments
1A and 1B, with some exceptions. Rather than responding vocally,
participants performed the color identification task by pressing the
“J” key for red, the “K” key for blue, the “L” key for green, and
the *;” key for yellow using the four fingers of their right hand. In
addition, they performed the memory task by pressing the “Y” key
for “same” responses and the “N” key for “different” responses
with two fingers of their left hand. Similar to Schmidt et al. (2010),
no timeout was used for the memory task, although participants
were encouraged to respond as quickly and as accurately as they
could. Finally, responses to colors and digits were followed by a
feedback message following a 300-ms blank screen. The message
was displayed for 500 ms in white Courier New, 14 point, in the
center of the screen, and read “correct,” “incorrect,” or “no re-
sponse” for correct, incorrect, or missed responses, respectively.
The reason for these changes was to reproduce as closely as
possible the conditions under which Schmidt et al. (2010) obtained
their pattern (reduced contingency-learning effects with increasing
WM load). For that same reason, we maintained 16 practice trials
as in Experiments 1A and 1B even though, in manual responding,

> Another potential reason for the failure to observe a significant reduc-
tion in the contingency-learning effect with increasing WM load in Exper-
iments 1A and 1B is that the present load procedure might have led to an
underestimation of load effects. Because chance performance was 50% in
the two-alternative forced choice WM task that we used, on a significant
proportion of trials, participants might have simply guessed the correct
answer. As a result, color-naming latencies on those trials would have been
included in the analyses even though participants were not necessarily
maintaining a WM load during those trials. Although using a WM task
without a two-alternative forced choice procedure would have been a
reasonable way to minimize this problem in the subsequent experiments,
the strategy that we pursued instead was to reproduce the conditions under
which Schmidt et al. (2010) obtained their pattern (reduced contingency-
learning effects with increasing WM load) as closely as possible. Because
the two-alternative forced choice WM task used in Experiments 1A and 1B
was the same as that used by Schmidt et al. (2010), for consistency’s sake,
we decided to maintain their load procedure in the following experiments.
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16 practice trials are likely not enough for participants to effec-
tively learn color-to-key mappings. The implication would be that
at least some participants were likely still in the process of learning
those mappings in the course of the experiment. However, because
we failed to replicate Schmidt et al.’s (2010) pattern in Experiment
1A, we deemed it important that the procedure in Experiment 2A
not deviate too much from Schmidt et al.’s (2010) procedure, one
in which there were no practice trials at all.

Results

Prior to the analyses, responses faster than 300 ms on either the
color identification task or the WM task and responses slower than
the time limit on the color identification task (accounting for 1.1%
and 1.4% of the data points in Experiments 2A and 2B, respec-
tively) were discarded. Trials on which participants failed to re-
spond correctly on the WM task (which accounted for 4.4% and
7.7% of the data points in the low- and high-load groups in
Experiment 2A, and 4.0% and 7.1% of the data points in the low-
and high-load groups in Experiment 2B, respectively) were re-
moved as well. Latency analyses were conducted only on trials in
which the response to the color identification task was also correct.
Experiments 2A and 2B were analyzed in the same way as Ex-
periments 1A and 1B, respectively. The mean RTs and error rates
are presented in Tables 5 and 6 for Experiments 2A and 2B,
respectively.

Experiment 2A (nonconflict color identification task).

RTs. Both the main effects of contingency (high-contingency
faster than low-contingency), F(1, 57) = 41.86, MSE = 758, p <
.001, m2 = 423, and WM load, F(2, 57) = 5.164, MSE = 28,876,
p = .009, v} = .153, were significant. Post hoc 7 tests using the
Tukey’s HSD adjustment for multiple comparisons revealed that
the no-load group was faster than both the low-load group (p =
.024) and the high-load group (p = .016), whereas the low-load
and the high-load groups did not differ significantly from one
another (p = .987). This time, contingency and WM load inter-
acted, F(2, 57) = 6.80, MSE = 758, p = .002, v} = .193.
Follow-up ANOVAs comparing every pair of load groups were
conducted to explore this interaction. Inspection of Contingency X
WM Load interactions showed that the contingency-learning effect

Table 5

Mean RTs and Error Rates (and Corresponding Standard
Errors) for Experiment 2A—Manual Nonconflict Color
Identification Task

Contingency RTs Error rates

No load

High 712 (26) .025 (.005)

Low 769 (25) .036 (.008)

Contingency effect 57 011
Low load

High 829 (28) .027 (.005)

Low 857 (27) .036 (.007)

Contingency effect 28 .009
High load

High 843 (29) .035 (.006)

Low 855 (27) .044 (.009)

Contingency effect 12 .009

Note. RTs = reaction times.
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in the no-load group (57 ms) was larger than those in the low-load
(28 ms), F(1, 38) = 5.54, MSE = 703, p = .024, 3 = .127, and
high-load groups (12 ms), F(1, 38) = 15.10, MSE = 670, p <
.001, m7 = .284, whereas the low- and high-load groups did not
significantly differ from each other, F(1, 38) = 1.62, MSE = 901,
p = 211, m = .041. Paired ¢ tests conducted for each load group
separately, however, revealed significant contingency-learning ef-
fects for both the no-load group, #(19) = —8.27, p < .001, and the
low-load group, #(19) = —2.99, p = .008, but not for the high-load
group, #(19) = —1.27, p = 219.

Error rates. Only the main effect of contingency (high-
contingency more accurate than low-contingency) was significant,
F(1, 57) = 5.66, MSE = .000, p = .021, )} = .090.

Experiment 2B (Stroop task).

RTs. There was a significant main effect of congruency (con-
gruent faster than incongruent), F(1, 57) = 136.36, MSE = 4471,
p < .001, m2 = .705. Latencies also tended to slow down as load
increased; however, the WM load effect was only marginal, F(2,
57) = 2.52, MSE = 61,061, p = .089, ) = .081. The only
significant interaction was that between congruency and item type,
F(1,57) = 74.61, MSE = 2888, p < .001, m} = .567, indicating
a regular item-specific proportion-congruent effect, with larger
congruency effects for mostly-congruent items (161 ms) than for
mostly-incongruent items (41 ms). Importantly, there was no
three-way interaction between congruency, item type, and WM
load, F(2, 57) = 1.01, MSE = 2888, p = 371, m; = .034,
suggesting that the item-specific proportion-congruent effect was
equivalent in the three load groups. The Bayes factor, BF,, = 5.45
+ 2.92%, suggested that there was “moderate” evidence for the
absence of the three-way interaction.

Error rates. There were main effects of congruency (congru-
ent more accurate than incongruent), F(1, 57) = 16.93, MSE =
001, p < .001, 3 = 229, item type (mostly-incongruent more
accurate than mostly-congruent), F(1, 57) = 6.76, MSE = .001,
p = .012,m; = .106, and WM load, F(2, 57) = 7.73, MSE = .002,
p = .001, m2 = .213. Post hoc 7 tests using the Tukey’s HSD
adjustment for multiple comparisons revealed that the no-load
group was more accurate than both the low-load group (p = .002)
and the high-load group (p = .006), whereas the low-load and
high-load groups did not differ significantly from one another (p =
.924). Congruency and item type interacted showing a regular
item-specific proportion-congruent effect with a larger congruency
effect for mostly-congruent items (3.3%) than for mostly-
incongruent items (0.7%), F(1,57) = 9.16, MSE = .001, p = .004,
M5 = .138. There was also a tendency for congruency effects to be
larger overall in the load groups (especially the low-load one);
however, the Congruency X WM Load interaction did not reach
significance, F(2, 57) = 2.89, MSE = .001, p = .064, ’T]IZ, =.092.
The three-way interaction between congruency, item type, and
WM load was not significant, F(2, 57) = .91, MSE = .001, p =
41, ’T]IZ, = .031, and the Bayes factor analysis revealed that there
was, indeed, “moderate” evidence for the absence of this interac-
tion, BF,, = 4.21 * 2.73%.

Discussion

Experiments 2A and 2B were an investigation of the impact of
WM load on contingency-learning and item-specific proportion-
congruent effects using manual responses (and feedback) in both
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Table 6
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Mean RTs and Error Rates (and Corresponding Standard Errors) for Experiment 2B—Manual

Stroop Task

RTs Error rates
Mostly-congruent ~ Mostly-incongruent ~ Mostly-congruent ~ Mostly-incongruent
Congruency items items items items

No load

Congruent 766 (29) 817 (33) .008 (.005) 011 (.005)

Incongruent 940 (41) 885 (36) .021 (.009) .013 (.006)

Congruency effect 174 013 .002
Low load

Congruent 794 (30) 857 (36) .021 (.007) .020 (.007)

Incongruent 947 (33) 904 (35) 077 (.013) .036 (.007)

Congruency effect 153 .056 016
High load

Congruent 877 (25) 916 (26) .028 (.007) .027 (.012)

Incongruent 1032 (28) 923 (24) .058 (.013) .030 (.005)

Congruency effect 155 .030 .003

Note. RTs = reaction times.

the nonconflict color identification task and the Stroop task. With
this modification, the baseline contingency-learning effect was
much larger in Experiment 2A (57 ms) than it was in Experiment
1A (12 ms), replicating recent findings that feedback-assisted
manual responding elicits larger contingency-learning effects than
does vocal responding (Forrin & MacLeod, 2017; Spinelli et al.,
2020). More importantly, this modification returned a pattern of
results that is consistent with Schmidt et al.’s (2010) pattern, as the
57-ms contingency learning effect in the no-load group was re-
duced to a nonsignificant 12-ms effect in the high-load group.
Thus, it appears that the concurrent WM task not only interfered
with overall performance in the color identification task, but also
impaired participants’ ability to learn stimulus—response associa-
tions.

Importantly, according to the contingency-learning account, the
pattern found for the nonconflict color identification task in Ex-
periment 2A should have emerged in the Stroop task in Experi-
ment 2B. That is, there should have been a reduction in the
item-specific proportion-congruent effect with increasing WM
load. The reason is that according to this account, it is contingency
learning that is responsible for the faster latencies that are typically
observed for mostly-congruent congruent items compared with
mostly-incongruent congruent items, and for mostly-incongruent
incongruent items compared with mostly-congruent incongruent
items. If WM load impairs contingency learning, the above differ-
ences in latencies should be attenuated, resulting in smaller item-
specific proportion-congruent effects. However, no evidence in
support of this prediction was found, with equivalent item-specific
proportion-congruent effects in all load groups.

Note that, again, overall performance worsened with increasing
WM load (although that pattern was more apparent for the error
rates), confirming that the WM load manipulation was effective.
However, somewhat surprising is the fact that the high-load group,
the group that showed the smallest contingency-learning effect in
Experiment 2A, showed the numerically largest item-specific
proportion-congruent effect (a 155-ms congruency effect for
mostly-congruent items and a 7-ms congruency effect for mostly-
incongruent items) in Experiment 2B even though the three-way

interaction was not significant. The Experiment 2B pattern is, of
course, exactly the opposite of that predicted by the contingency-
learning account which successfully predicted the reduced
contingency-learning effect in the high-load condition in Experi-
ment 2A. Note, however, that different participants took part in
Experiments 2A and 2B. Experiments 3A and 3B were designed to
allow us to reexamine this pattern in the high-load groups in a
cleaner fashion by having the same participants perform both the
nonconflict color identification task and the Stroop task.

Experiments 3A and 3B (Manual Responses)

Experiments 3A and 3B essentially replicated Experiments 2A
and 2B, the only difference being that the same participants were
in both experiments (i.e., task was now a within-subject manipu-
lation although WM load was still a between-subjects manipula-
tion). The main purpose of these experiments was to seek confir-
mation that participants who show reduced contingency-learning
effects with increasing WM load in the nonconflict color identifi-
cation task also show equivalent item-specific proportion-
congruent effects across all load conditions in the Stroop task.
Replicating this pattern would suggest that contingency learning
and item-specific proportion-congruent effects are dissociable phe-
nomena. Specifically, it would suggest that contingency learning
may not be an important component in the item-specific
proportion-congruent effect, with adaptation to item-specific con-
flict frequency, a reactive control process, playing a crucial role
instead. Indeed, the finding obtained in both Experiments 1B and
2B that WM load has no significant impact on the item-specific
proportion-congruent effect in the Stroop task is easily accommo-
dated by the DMC account (Braver, 2012; Braver et al., 2007),
which proposes that reactive control, a process that generates a
proportion-congruent effect, continues to be a useful option when
available WM resources are decreased.

A secondary purpose of Experiments 3A and 3B was to explore
the question of whether the availability of WM resources as
determined by WM capacity (i.e., the amount of information an
individual is able to maintain in working memory while perform-
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ing a distracting task) impacts performance in a similar way as
concurrent memory load does. As noted, Schmidt et al. (2010)
have argued that a concurrent WM load interferes with the ability
to learn word-response contingencies because that ability requires
limited-capacity memory resources. Although not examined by
Schmidt et al. (2010), this idea suggests that an individual-
differences comparison between participants with lower and
higher WM resources could be informative. Low WM-capacity
individuals performing a simple color identification task (i.e.,
without load), similar to participants in general performing this
task with a taxing concurrent task (i.e., with a high WM load), may
not have enough WM resources to allocate to the process of
learning word-response contingencies. As a result, contingency
learning should be reduced for those individuals. The implication
is that, first, the contingency-learning effect emerging in simple
nonconflict color identification tasks (i.e., without load) should be
smaller for individuals with lower WM capacity. Further, based on
the assumption made by the contingency-learning account that the
item-specific proportion-congruent effect in the Stroop task really
is a contingency-learning effect in disguise, the item-specific
proportion-congruent effect (i.e., without load) should also be
smaller for individuals with lower WM capacity.

The results from the WM-load manipulation implemented in
Experiments 2A and 2B, however, suggest that observing the
complete data pattern expected from the contingency-learning
account is unlikely. On the one hand, we did find, replicating
Schmidt et al. (2010), that contingency-learning effects diminished
with higher WM load in the nonconflict color identification task
(Experiment 2A). Assuming a parallel between WM load and WM
capacity (high load = low capacity), this result would certainly
suggest that contingency-learning effects should also be smaller
for individuals with lower WM capacity in a simple nonconflict
color identification task. On the other hand, contradicting the
contingency-learning account, we did not find reduced item-
specific proportion-congruent effect with higher WM load in the
Stroop task (Experiment 2B). Based on this empirical result, it
seems unlikely that item-specific proportion-congruent effects
would be smaller for individuals with lower WM capacity in a
simple Stroop task.

The expectations derived from the control account concerning
the item-specific proportion-congruent effect are somewhat more
complicated. The DMC account (Braver, 2012; Braver et al.,
2007), in particular, attributes an important role to WM capacity in
determining the modes of control (proactive vs. reactive) that
individuals can and do use. Low WM-capacity individuals would
be relatively unable to implement proactive control and would,
therefore, mostly rely on reactive control. In contrast, high WM-
capacity individuals would typically engage in proactive control
but would have access to reactive control as well. The implications
for the impact of WM capacity on the item-specific proportion-
congruent effect in the Stroop task would be as follows. First, to
the extent that the item-specific proportion-congruent effect re-
flects reactive control, a form of control both low and high WM-
capacity individuals have access to, this effect should emerge in all
individuals. Second, in the Stroop task, the preference for high
‘WM-capacity individuals for proactive control would induce them
to engage in a process of constant goal maintenance. As noted (see
Footnote 1), this process could not cause an item-specific
proportion-congruent effect, however, it could attenuate this effect.
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The reason is that focusing attention on task-relevant information
would reduce the impact of conflict, and therefore the impact of
the frequency with which that conflict arises.

In line with this idea, Hutchison, Bugg, Lim, and Olsen (2016)
found that using an informative cue before a Stroop trial to prompt
proactive control reduced or eliminated the item-specific proportion-
congruent effect (i.e., there was little difference between mostly-
congruent and mostly-incongruent items when participants were
well prepared to deal with conflict on the upcoming trial). What is
possible, therefore, is that high WM-capacity individuals would
engage a high level of proactive control even in a regular Stroop
task (i.e., without cues) and that this process would reduce not only
the overall congruency effects but also the item-specific
proportion-congruent effect, particularly in the error data.

The reason for error data being more likely to show this reduc-
tion is twofold. First, application of proactive control would likely
reduce error rates to the floor, making it hard to detect effects in
those data. Second, errors are considered a more sensitive index of
goal maintenance than latencies because committing a word-
reading error on an incongruent trial means that the task goal was
neglected (whereas an increased latency does not necessarily in-
dicate goal neglect; Kane & Engle, 2003). If, in a Stroop task, high
WDM-capacity individuals strive to constantly maintain the color-
naming goal by applying proactive control, that means that they
would be doing so even when dealing with situations for which
concurrent application of reactive control suggests that relaxing
attention would be appropriate, for example, with mostly-
congruent items. Thus, in high WM-capacity individuals, the re-
laxation of attention for mostly-congruent items promoted by
reactive control might cause an increased latency when those items
are incongruent, but it should not result in an error. The same
would not be true for low WM-capacity individuals, however,
because they would not have the WM resources necessary to
support continuous engagement of proactive control. Therefore, in
those individuals, the relaxation of attention for mostly-congruent
items induced by reactive control may very well cause a word-
reading error in addition to an increased latency when those items
are incongruent. As a result, low WM-capacity individuals would
tend to show a larger item-specific proportion-congruent effect in
the errors than would high WM-capacity individuals.

In sum, while the contingency-learning account would seem to
predict that the item-specific proportion-congruent effect, as an
instance of contingency learning, would be reduced for low WM-
capacity individuals, the prediction made by the DMC account
would be, if anything, a smaller item-specific proportion-
congruent effect for high WM-capacity individuals with this pat-
tern being more likely to emerge in the errors.

Interestingly, an experiment conducted by Hutchison (2011)
does allow at least an initial evaluation of these ideas. Hutchison
(2011) collected WM-capacity scores for participants performing a
Stroop task in which list-wide proportion-congruent effects, item-
specific proportion-congruent effects, and contingency-learning
effects were examined independently from one another. Of rele-
vance for the present research, he found that although both low and
high WM-capacity participants did show a significant item-
specific proportion-congruent effect in latencies, only low WM-
capacity participants showed this effect in error rates. This result is
quite consistent with the DMC view that, while all individuals
have access to reactive control (as demonstrated by the emergence
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of the item-specific proportion-congruent effect in the latencies),
high WM-capacity individuals would concurrently engage in pro-
active control, thus preventing word-reading errors and reducing
the item-specific proportion-congruent effect in the error data.
Also of note is the fact that Hutchison’s (2011) data appear
difficult to reconcile with the contingency-learning account. In
addition to the fact that this account appears unable to explain the
pattern of results relative to the item-specific proportion-congruent
manipulation, there was also no evidence in Hutchison’s (2011)
contingency-learning manipulation, which was dissociable from
the item-specific proportion-congruency manipulation in his ex-
periment, that contingency-learning effects were larger for high
than low WM-capacity individuals, the pattern that the contingency-
learning account appears to predict.®

‘What must be noted, however, is that Hutchison’s (2011) ex-
periment was peculiar in that list-wide proportion congruency,
item-specific proportion congruency, and contingency learning
were all manipulated in the context of that same experiment.
Furthermore, his use of verbal responses to colors might have
weakened the contingency-learning effect (which was indeed
smaller than generally reported; Forrin & MacLeod, 2017; Spinelli
et al., 2020), making individual differences related to this effect
harder to observe (as appears to have occurred in the present
Experiment 1A).

The present Experiments 3A and 3B allowed a reexamination of
these issues in the context of more typical versions of the item-
specific proportion-congruent and contingency-learning manipula-
tions, that is, the two-item set design used thus far. WM capacity
was assessed for participants in the no-load group with a battery of
WM tests administered after Experiments 3A and 3B were com-
pleted. A data pattern consistent with the contingency-learning
account would be for there being smaller contingency-learning and
item-specific proportion-congruency effects for low WM capacity
individuals in the no-load condition. A pattern more consistent
with a control account would be that in the no-load condition in the
Stroop task individuals with lower WM capacity would show a
more pronounced pattern of item-specific proportion-congruent
effects than individuals with higher WM capacity, with that dif-
ference expected to be more prominent in the error rates than in the
latencies because errors appear to index cognitive processes (i.e.,
goal neglect) which better differentiate low and high WM-capacity
individuals performing the Stroop task (Kane & Engle, 2003).
Note also that manual responses (and feedback) were used in
Experiment 3A (and 3B) in an effort to produce larger
contingency-learning effects than those observed by Hutchison
(2011), thus providing a better way of determining whether and
how WM capacity influences the process of learning word-
response contingencies.

Method

Participants. Two-hundred and 35 participants took part in
both Experiment 3A (nonconflict color identification task) and
Experiment 3B (Stroop task). Of these, 127 were assigned to the
no-load group, 51 were assigned to the low-load group, and 57
were assigned to the high-load group. Twenty-seven participants
were removed because of an excessive number of errors and null
responses (above 25%) in either Experiment 3A or Experiment 3B,
leaving 208 participants, of which 126 were in the no-load group,

2019

43 were in the low-load group, and 39 were in the high-load group.
Many more participants were tested in the no-load group than in
the other groups because WM-capacity scores were recorded for
those participants, and individual-differences research requires
large sample sizes. Compared with Experiments 1A and 1B and
2A and 2B, the sample sizes of the low-load and the high-load
groups were approximately doubled because there were half of the
number of items per cell in Experiments 3A and 3B (see Materials
section) and, hence, more potential for noise to affect the results.
All participants were students at the University of Western On-
tario, aged 17-31 years and had normal or corrected-to-normal
vision. They received course credit for their participation.

Materials. The materials were identical to those of Experi-
ments 1A and 1B, respectively, except that each experiment only
included 96 trials (rather than 192) because participants did only
one block for each experiment instead of two.

Procedure. Participants completed Experiment 3A and 3B in
a single session. Each experiment included a single block of 96
trials preceded by 8 practice trials. Of the final 208 participants,
103 performed Experiment 3A (nonconflict color identification
task) first and Experiment 3B (Stroop task) second and 105 per-
formed Experiment 3B first and Experiment 3A second. Other than
this difference, the procedure was the same as in Experiments 2A
and 2B. Following these experiments, participants in the no-load
group completed a battery of complex span tests including one
block of the operation span task, followed by one block of the
symmetry span task, followed by one block of the rotation span
task (Conway et al., 2005; Kane et al., 2004; Redick et al., 2012;
Unsworth, Heitz, Schrock, & Engle, 2005). These tests were
shortened versions of complex span tasks aimed to test different
constructs in working memory, so as to obtain reliable measures of
WM capacity as a whole while minimizing testing duration (Foster
et al., 2015). In these complex span tasks, participants were given
a sequence of to-be-remembered items (e.g., a sequence of letters)
and had to complete a distractor task (e.g., solving a math problem)
between the presentations of each of the to-be-remembered items
in the sequence. The sequence of to-be-remembered items varied
from two to five items (symmetry span and rotation span tasks) or
from three to seven items (operation span task). Scores are calcu-
lated by summing the number of items correctly recalled in the
correct order, a measure known as the partial score (Turner &
Engle, 1989). Participants who completed the complex span tasks
also completed a questionnaire collecting measures of their mono-
lingual/bilingual status and other variables known to influence
executive functioning. The questionnaire data were irrelevant for
the present purposes and were not analyzed.

© This result, not reported in the original article, was obtained by rean-
alyzing Hutchison’s (2011) data from the low- and high-contingency
incongruent items using contingency (low vs. high) and WM-capacity
group (low capacity vs. high capacity) as variables in a split-plot ANOVA.
The results indicated a main effect of contingency in the RTs, F(1, 84) =
14.13, MSE = 1828, p < .001, n,% = .144, but not in the error rates, F <
1. Most importantly, contingency learning did not interact with WM-
capacity in either analysis (both F's < 1), indicating that the contingency-
learning effects in this experiment were equivalent for low and high
WDM-capacity individuals in both RTs (23 and 26 ms, respectively) and
error rates (0.6% and 0.4%, respectively).
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Results

Prior to the analyses, responses faster than 300 ms on either the
color identification task or the WM task and responses slower than
the time limit on the color identification task (accounting for 0.6%
and 1.2% of the data in Experiments 3A and 3B, respectively)
were discarded. Trials on which participants failed to respond
correctly on the WM task (which accounted for 4.0% and 6.3% of
the data in the low- and high-load groups in Experiment 3A, and
4.3% and 6.8% of the data in the low- and high-load groups in
Experiment 3B) were removed as well. Latency analyses were
conducted only on trials in which the response to the color iden-
tification task was also correct. Experiments 3A and 3B were
analyzed in the same way as Experiments 1A and 1B, respectively,
with the addition of order (Experiment 3A first vs. Experiment 3B
first) as a factor. To preview the results, order did reveal some
effects of practice (e.g., reduced latencies and error rates if the
experiment in question was performed second) but did not modify
the theoretically important interactions in the WM-load analysis in
either experiment (i.e., the Contingency X WM Load interaction in
Experiment 3A and the Congruency X Item Type X WM Load
interaction in Experiment 3B). Thus, for simplicity, we present the
mean RTs and error rates in Tables 7 and 8 for Experiments 3A
and 3B, respectively, without splitting the data by order.

We also explored the relation between WM capacity and per-
formance in the two experiments for participants in the no-load
group (the group for which WM capacity was measured). For this
analysis, 28 participants were removed because their accuracy on
the distractor component of one or more of the complex span tasks
was below 75%.” For each of the remaining 98 participants, the
partial scores obtained in each of the three complex span tasks
were standardized (as the operation span task returns scores on a
different scale than the other two tasks) and then averaged to
obtain a single composite score.

The analysis was conducted using mixed-effects modeling, a
type of analysis which permits use of both continuous and cate-
gorical variables (the fixed effects), while controlling for variance
among the participants and the items being used (the random
effects; Baayen, 2008; Baayen, Davidson, & Bates, 2008; for
similar analyses in the context of the Stroop task, see Meier &

Table 7

Mean RTs and Error Rates (and Corresponding Standard
Errors) for Experiment 3A—Manual Nonconflict Color
Identification Task

Contingency RTs Error rates
No load
High 665 (7) .021 (.002)
Low 728 (10) .036 (.004)
Contingency effect 63 015
Low load
High 783 (18) .028 (.004)
Low 814 (18) .039 (.008)
Contingency effect 31 011
High load
High 846 (25) .030 (.004)
Low 863 (23) .027 (.007)
Contingency effect 17 —.003

Note. RTs = reaction times.
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Kane, 2013, 2015). Latencies and errors were analyzed using
generalized linear mixed-effects models (GLMMs) in R Version
3.5.1 (R Core Team, 2018), treating subjects, colors, and words as
random effects. For Experiment 3A, the fixed effects were con-
tingency (high vs. low), order (Experiment 3A first vs. Experiment
3B first), and span score (the composite score from the complex
span tasks, a continuous variable). For Experiment 3B, the fixed
effects were congruency (congruent vs. incongruent), item type
(mostly-congruent vs. mostly-incongruent), order (Experiment 3A
first vs. Experiment 3B first), and span score.

For both experiments, the span score was standardized (i.e.,
centered and scaled) to help model estimation (Bolker, 2019).
Prior to running the model, R-default treatment contrasts were
changed to sum-to-zero contrasts (i.e., contr.sum) to help interpret
lower-order effects in the presence of higher-order interactions
(Levy, 2014; Singmann & Kellen, 2018). The lme4 package,
Version 1.1-18-1 (Bates, Michler, Bolker, & Walker, 2015) was
used to run the GLMMs. The models were fit by maximum
likelihood with the Laplace approximation technique. Model esti-
mation was conducted using the BOBYQA optimizer, an optimizer
known to generate fewer false-positive convergence failures than
other optimizers in the current version of Ime4, with a maximum
number of 1,000,000 iterations (Bolker, 2019). The emmeans
package, Version 1.3.1 (Lenth, 2018), was used to conduct
follow-up tests. The ggplot2 package, Version 3.1.0 (Wickham,
2016), was used to generate graphs. A Gamma distribution was
used to fit the raw RTs, with an identity link between the fixed
effects and the dependent variable (Lo & Andrews, 2015), whereas
a binomial distribution with a logit link between the fixed effects
and the dependent variable was used to fit the error data.

In addition to these mixed-effects analyses, traditional ANO-
VAs were conducted contrasting participants in the top quartile for
span scores (the high WM-capacity individuals) with those in the
bottom quartile for span scores (the low-WM capacity individu-
als). Although this extreme-group analysis does not reflect the
current tendency in individual-differences research (e.g., Meier &
Kane, 2013, 2015), it is reported in Appendix A for the sake of
consistency with previous reports in the relevant literature, partic-
ularly Hutchison (2011) who did use this analysis.

Experiment 3A (nonconflict color identification task).

WM load analysis.

RTs. There were main effects of contingency (high-
contingency faster than low-contingency), F(1, 202) = 49.20,
MSE = 2225, p < .001, m; = .196, order (overall faster latencies
for participants who performed Experiment 3A following Exper-
iment 3B than for participants who performed Experiment 3A
first), F(1,202) = 9.42, MSE = 21,867, p = .002, 2 = .045, and
WM load, F(2,202) = 40.39, MSE = 21,867, p < .001, 1 = .286.
Post hoc 7 tests using the Tukey’s HSD adjustment for multiple
comparisons revealed that the no-load group was faster than both

7 We used a 75% cut-off (based on performance in the three complex
span tasks) because the commonly used 85% cut-off (e.g., Unsworth et al.,
2005) resulted in the exclusion of quite a large number of participants (i.e.,
58, that is 46% of the initial 126 participants), thus severely limiting the
statistical power of the WM-capacity analysis. Indeed, the pattern of results
obtained with an 85% cut-off was numerically equivalent to that obtained
using a 75% cut-off, but some of the effects did not quite reach statistical
significance in the 85% cut-off analyses.
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Table 8

Mean RTs and Error Rates (and Corresponding Standard Errors) for Experiment 3B—Manual

Stroop Task

RTs Error rates
Mostly-congruent ~ Mostly-incongruent ~ Mostly-congruent ~ Mostly-incongruent
Congruency items items items items

No load

Congruent 699 (10) 771 (14) .018 (.003) .029 (.006)

Incongruent 885 (14) 829 (13) .061 (.008) .041 (.004)

Congruency effect 186 .043 012
Low load

Congruent 825 (24) 878 (24) .022 (.005) .033 (.010)

Incongruent 1012 (26) 948 (21) 074 (.014) .048 (.007)

Congruency effect 187 052 015
High load

Congruent 869 (26) 920 (28) .026 (.004) .023 (.009)

Incongruent 1022 (24) 974 (21) 048 (.011) .038 (.007)

Congruency effect 153 022 015

Note. RTs = reaction times.

the low-load group (p < .001) and the high-load group (p < .001),
and that the low-load group was faster than the high-load group
(p = .046). Importantly, contingency and WM load interacted,
F(2,202) = 9.10, MSE = 2225, p < .001, v} = .083.

Follow-up ANOVAs comparing every pair of load groups were
conducted to explore this interaction. Inspection of the Contin-
gency X WM Load interactions showed that the contingency-
learning effect for the no-load group (63 ms) was larger than those
for the low-load (31 ms), F(1, 165) = 7.97, MSE = 2197, p =
.005, 'f]ﬁ = .046, and the high-load groups (17 ms), F(1, 161) =
14.89, MSE = 2161, p < .001, m} = .085, whereas low- and
high-load groups did not significantly differ, F(1, 78) = .76,
MSE = 2416, p = 387, m7 = .010. Paired 1 tests conducted for
each load group separately, however, revealed significant
contingency-learning effects for both the no-load group, #(125) =
—11.07, p < .001, and the low-load group, #(42) = —2.93, p =
.006, but not for the high-load group, #(38) = —1.53, p = .135.
There was also a marginal interaction between contingency and
order, F(1, 202) = 2.98, MSE = 2225, p = .086, n; = .015,
indicating a tendency for overall larger contingency-learning ef-
fects for participants who did Experiment 3A following Experi-
ment 3B (54 ms) than for participants who did Experiment 3A first
(42 ms). Likely, this marginal interaction reflects a practice effect
whereby contingencies are more easily learned when progressing
in the experiment (e.g., Schmidt & De Houwer, 2016).

Error rates. The only significant effect was that of contin-
gency (high-contingency more accurate than low-contingency),
F(1, 202) = 6.08, MSE = .001, p = .014, T],z, = .029. There was
also a tendency for contingency-learning effects to decrease with
increasing WM load, although the Contingency X WM Load
interaction did not reach significance, F(2, 202) = 2.77, MSE =
.001, p = .065, m3 = .027, and the Bayes factor indicated no real
preference for either the model with the interaction or the model
without it, BF,;, = 1.35 = 5.9%.

WM capacity analysis.

RTs. There were main effects of contingency (high-
contingency faster than low-contingency), B = —32.42, SE =
2.19, z = —14.81, p < .001, and span score (latencies decreased

with higher scores), B = —16.82, SE = 3.84, z = —4.38, p < .001.
There were also a three-way between contingency, order, and span
score, B = 5.30, SE = 1.97, z = 2.69, p = .007.

Follow-up tests revealed that the source of this interaction was
that contingency and span score had a different relationship for
participants performing Experiments 3A first compared with par-
ticipants performing Experiment 3A following Experiment 3B.
The former group of participants showed a marginal tendency for
diminishing contingency-learning effects with higher span score,
B = 11.01, SE = 5.81, z = 1.90, p = .058. This pattern is
represented in Figure 1 as a scatterplot of participants’ mean
latencies to low- and high-contingency items as a function of their
span score. Here, when moving from the left side of the graph
(lower span scores) to the right side of the graph (higher span
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Figure 1. The impact of span score on the contingency-learning effect in
latencies for no-load participants in Experiment 3A who did Experiment
3A first. For each participant, the mean latency for high- and low-
contingency items is marked with a circle and a triangle, respectively.
Regression slopes (with 95% confidence interval bands) for high- and
low-contingency items are marked with a solid line and a dashed line,
respectively. RT = reaction time.
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scores), latencies diminish overall, and so does the distance be-
tween the solid line (high-contingency items) and the dashed line
(low-contingency items), that is, the contingency-learning effect.

Participants performing Experiment 3A following Experiment
3B showed a marginal tendency in the opposite direction,
B = —10.18, SE = 6.13, z = —1.66, p = .097, with increasing
contingency-learning effects with higher span score. This pattern is
represented in Figure 2 where the distance between the solid line
(high-contingency items) and the dashed line (low-contingency
items) increases, rather than decreases, with higher span score.

Errors. There were significant main effects of contingency
(high-contingency more accurate than low-contingency), B = .34,
SE = .07,z = 4.62, p < .001, and span score (accuracy increased
with higher scores), B = .32, SE = .10, z = 3.34, p < .001.There
was also a three-way interaction between contingency, order, and
span score, B = —.14, SE = .07, z = —2.03, p = .042. Follow-up
tests revealed that, similar to what was found in the latencies, this
interaction indicated that while contingency-learning effects
tended, if anything, to decrease (but not significantly so) with
higher scores for participants who did Experiment 3A first,
B = —21,SE = .20,z = —1.06, p = .292, those effects showed
a marginal tendency to increase with higher scores for participants
who did Experiment 3A following Experiment 3B, B = .33, SE =
17,z = 1.89, p = .059.

Experiment 3B (Stroop task).

WM load analysis.

RTs. There were main effects of congruency (congruent faster
than incongruent), F(1, 202) = 301.62, MSE = 7367, p < .001,
Mz = .599, order (overall faster latencies for participants who
performed Experiment 3B following Experiment 3A than for par-
ticipants who performed Experiment 3B first), F(1, 202) = 7.08,
MSE = 62,962, p = .008, ’r],% = .034, and WM load, F(2, 202) =
28.63, MSE = 62,962, p < .001, n,z, = .221. Post hoc 7 tests using
the Tukey’s HSD adjustment for multiple comparisons revealed
that the no-load group was faster than both the low-load group
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Figure 2. The impact of span score on the contingency-learning effect in
latencies for no-load participants in Experiment 3A who did Experiment
3A following Experiment 3B. For each participant, the mean latency for
high- and low-contingency items is marked with a circle and a triangle,
respectively. Regression slopes (with 95% confidence interval bands) for
high- and low-contingency items are marked with a solid line and a dashed
line, respectively. RT = reaction time.

(p < .001) and the high-load group (p < .001), while low-load and
high-load groups did not differ significantly from one another (p =
.513). There was an interaction between congruency and order,
F(1,202) = 7.15, MSE = 7367, p < .001, n} = .034, indicating
that, overall, congruency effects were larger for participants who
did Experiment 3B following Experiment 3A (134 ms) than for
participants who did Experiment 3B first (111 ms). This result
seems to indicate that participants were overall less prepared to
deal with conflict in the Stroop task after having performed a
version of the color identification task in which there was no
conflict to deal with. More importantly, there was also an interac-
tion between congruency and item type, F(I, 202) = 98.41,
MSE = 5296, p < .001, v} = .328, indicating a regular item-
specific proportion-congruent effect, with larger congruency ef-
fects for mostly-congruent items (180 ms) than for mostly-
incongruent items (60 ms). Finally, there was again no three-way
interaction between congruency, item type, and WM load, F(2,
202) = .63, MSE = 5296, p = .54, n,’, = .006, indicating that the
item-specific proportion-congruent effect was equivalent in all
load groups. Indeed, Bayesian analyses revealed that there was
“strong” evidence in favor of the absence of this three-way inter-
action, BF,, = 10.76 = 13.63%.

Error rates. There were main effects of congruency (congru-
ent more accurate than incongruent), F(1, 202) = 39.76, MSE =
.003, p < .001, T]Iz, = .164, and order (participants who did
Experiment 3B following Experiment 3A were overall more ac-
curate than those who did Experiment 3B first), F(1, 202) = 4.41,
MSE = .006, p = .037, T],% = .021. Congruency also interacted
with item type, F(1, 202) = 8.63, MSE = .003, p = .004, nf, =
.041, indicating that congruency effects were larger for mostly-
congruent items (4.1%) than mostly-incongruent items (1.3%).
This item-specific proportion-congruent effect was not modulated
by WM load, as no three-way interaction between congruency,
item type, and WM load, F(2, 202) = .92, MSE = .003, p = .40,
nﬁ =.009, was found. Once again, in the Bayesian analyses, there
was “moderate” evidence in support of the model without the
interaction, BF,, = 7.04 = 6.48%.

The item-specific proportion-congruent effect was, however,
modulated by order, that is, there was a three-way interaction
between congruency, item type, and order, F(2, 202) = 5.28,
MSE = .003, p = .023, nﬁ = .025. To explore this three-way
interaction, two separate ANOVAs were conducted for each order.
Inspection of the Congruency X Item Type interaction in these
ANOVAs revealed a regular item-specific proportion-congruent
effect for participants who did Experiment 3B first (congruency
effect for mostly-congruent items: 5.1%; congruency effect for
mostly-incongruent items: .7%), F(1, 102) = 10.64, MSE = .004,
p = .002, 1]12, = .094. In contrast, the item-specific proportion-
congruent effect was not significant for participants who did
Experiment 3B after Experiment 3A (congruency effect for
mostly-congruent items: 3%; congruency effect for mostly-
incongruent items: 1.8%), F(1, 100) = .30, MSE = .002, p = .59,
nﬁ = .003, presumably because errors were reduced in this situa-
tion (as in Experiment 1B).

WM capacity analysis.

RTs. There were main effects of congruency (congruent faster
than incongruent), 3 = —61.03, SE = 2.25,z = —27.14, p < .001,
order (overall faster latencies for participants who did Experiment
3B following Experiment 3A than for participants who did Exper-
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iment 3B first), B = —32.77, SE = 4.20,z = —7.80, p < .001, and
span score (latencies decreased with higher scores), p = —20.34,
SE = 3.94,z = —5.16, p < .001. Congruency interacted with item
type, B = —30.59, SE = 2.16, z = —14.18, p < .001, indicating
a regular item-specific proportion-congruent effect. There was also
a marginal interaction between item type and order, B = —4.55,
SE = 2.40, z = —1.90, p = .058, indicating that the advantage for
participants who did Experiment 3B following Experiment 3A
compared with participants who did Experiment 3B first was
overall more pronounced in the mostly-congruent condition than in
the mostly-incongruent condition. Order also interacted with span
score, B = —12.19, SE = 342, z = —3.57, p < .001, indicating
a stronger reduction in latencies associated with higher span score
for participants who did Experiment 3B following Experiment 3A
than for participants who did Experiment 3B first. Finally, there
was a three-way interaction between congruency, order, and span
score, B = 6.02, SE = 2.12, z = 2.84, p = .005. Follow-up tests
revealed that the source of this interaction was that, while congru-
ency effects diminished with higher span score for participants
who did Experiment 3B following Experiment 3A, 3 = 17.88,
SE = 597, z = 299, p = .003, congruency effects tended, if
anything, to increase (but not significantly so) for participants who
did Experiment 3B first, B = —6.20, SE = 6.02,z = —1.03,p =
.303.

More importantly, there was no three-way interaction between
congruency, item type, and span score, 3 = —1.35, SE = 2.38,
z = —.57, p = .57, suggesting that the item-specific proportion-
congruent effect, overall, did not change across the range of scores,
a pattern represented in Figure 3. In this scatterplot, the distance
between the solid line (congruent items in the mostly-congruent
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Figure 3. The impact of span score on the item-specific proportion-
congruent effect in latencies for no-load participants in Experiment 3B. For
each participant, the mean latency for congruent items in the mostly-
congruent condition, incongruent items in the mostly-congruent condition,
congruent items in the mostly-incongruent condition, and incongruent
items in the mostly-incongruent condition, is marked with a square, a
circle, a triangle, and a rhombus, respectively. Regression slopes (with
95% confidence interval bands) for congruent items in the mostly-
congruent condition, incongruent items in the mostly-congruent condition,
congruent items in the mostly-incongruent condition, and incongruent
items in the mostly-incongruent condition, are marked with a solid line, a
dotted line, a long-dashed line, and a dot-dash patterned line, respectively.
RT = reaction time.
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condition) and the dotted line (incongruent items in the mostly-
congruent condition) is larger than the distance between the long-
dashed line (congruent items in the mostly-incongruent condition)
and the dot-dash patterned line (incongruent items in the mostly-
incongruent condition), indicating an item-specific proportion-
congruent effect. This pattern remains similar when moving from
the left side of the graph (lower span scores) to the right side of the
graph (higher span scores) even as latencies diminish for individ-
uals with higher scores. Note also that order did not modulate this
pattern, that is, there was no four-way interaction between con-
gruency, item type, span score, and order, B = 3.45, SE = 2.51,
z =138, p=.169.

Errors. There were main effects of congruency (congruent
more accurate than incongruent), p = .48, SE = .08,z = 6.34, p <
.001, and span score (fewer errors with higher scores), § = .37,
SE = .11, z = 3.23, p = .001. There was also an interaction
between congruency and item type, B = .24, SE = .07, z = 3.35,
p < .001, reflecting a regular item-specific proportion-congruent
effect. There was also a marginal interaction between item type
and order, B = .14, SE = .07, z = 1.85, p = .065, indicating a
tendency for participants who did Experiment 3B first to be overall
more accurate than participants who did Experiment 3B following
Experiment 3A in the mostly-incongruent condition, but not in the
mostly-congruent condition. Order also interacted with span score,
B = —.23,8E = .11,z = —2.01, p = .045, indicating a stronger
reduction in error rates associated with higher span score for
participants who did Experiment 3B first than for participants who
performed Experiment 3B following Experiment 3A.

More importantly, there was no evidence that the item-specific
proportion-congruent effect was modulated by span score, that is,
there was no three-way interaction between congruency, item type,
and span score, B = —.01, SE = .06, z = —.16, p = .88. The
relation between congruency, item type, and span score is repre-
sented in the scatterplot in Figure 4. Even though the item-specific
proportion-congruent effect is more noticeable in the left side of
the graph, statistically, there was no evidence that this effect was
larger for participants scoring lower on the complex span tasks
than for those scoring higher.

Discussion

Using a within-subject design, Experiments 3A and 3B replicated
the basic data patterns found in Experiments 2A and 2B: Increasing
WM load impairs participants’ ability to learn word-response associ-
ations in the nonconflict color identification task, but it does not affect
the ability of the same participants to produce item-specific
proportion-congruent effects in the Stroop task. The robustness of the
pattern found for Experiments 2A and 2B is thus confirmed.

The exploratory WM-capacity analysis conducted for participants
in the no-load condition produced a pattern which did not parallel that
of the load manipulation in the nonconflict color identification task. In
this task, replicating Hutchison’s (2011) contingency-learning manip-
ulation, there was no overall relation between WM capacity and
contingency-learning effects. However, the order in which the two
tasks (the nonconflict color identification task and the Stroop task)
were completed appeared to have a role in modulating that relation.
For participants who completed the nonconflict color identification
task first, higher WM capacity was associated with smaller
contingency-learning effects. For participants who completed the non-
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Figure 4. The impact of span score on the item-specific proportion-
congruent effect in error rates for no-load participants in Experiment
3B. For each participant, the mean latency for congruent items in the
mostly-congruent condition, incongruent items in the mostly-congruent
condition, congruent items in the mostly-incongruent condition, and
incongruent items in the mostly-incongruent condition, is marked with
a square, a circle, a triangle, and a rhombus, respectively. Regression
slopes (with 95% confidence interval bands) for congruent items in the
mostly-congruent condition, incongruent items in the mostly-congruent
condition, congruent items in the mostly-incongruent condition, and
incongruent items in the mostly-incongruent condition, are marked with
a solid line, a dotted line, a long-dashed line, and a dot-dash patterned
line, respectively.

conflict color identification task following the Stroop task, the oppo-
site pattern was found, with higher WM capacity leading to larger
contingency-learning effects. Thus, although there was some evidence
in this analysis for a relation between WM capacity and contingency-
learning effects, this relation does not appear to be as straightforward
as the relation between WM load and contingency learning appears to
be.

Additionally, there was no evidence in the Stroop task that
‘WM capacity modulated item-specific proportion-congruent ef-
fects in either the latencies or, more centrally, the error rates.
This result does parallel that of the load manipulation but it
represents a failure to replicate Hutchison’s (2011) data pattern,
although this failure may depend on the different analysis we
used (we did, in fact, replicate Hutchison, 2011 when using his
extreme-groups approach, see Appendix A). Overall, interindi-
vidual variability in WM resources does not appear to have a
clear impact on either contingency-learning or item-specific
proportion-congruent effects.

General Discussion

The Item-Specific Proportion-Congruent Effect Does
Not Have “Everything to Do With Contingency”

The contingency-learning account of proportion-congruent
effects has led to the reconsideration of a vast amount of
evidence once thought to lend support to the existence of a
mechanism of adaptation to conflict frequency (Schmidt,
2013b). That account has been especially compelling in the case
of the item-specific proportion-congruent effect (Jacoby et al.,
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2003), as most researchers have now concluded that learning of
word-response contingencies, rather than adaptation to item-
specific conflict frequency, is the default process governing
performance in item-specific proportion-congruent manipula-
tions using the two-item set design, that is, a type of design that
allows learning of contingencies for all stimuli (Bugg & Hutchi-
son, 2013; Schmidt, 2013a, 2013b; Schmidt & Besner, 2008).
The present research, however, casts doubt on this conclusion.

In this research, nonconflict and Stroop versions of a color
identification task were combined with a concurrent WM-load task
in order to examine whether increasing WM load affects the
contingency-learning effect and the item-specific proportion-
congruent effect in the same way. According to Schmidt et al.
(2010), contingency learning is a resource-dependent process, as
demonstrated by the fact that a high WM load reduces
contingency-learning effects in a nonconflict color identification
task. However, if the process that produces contingency-learning
effects is the same as the process that produces item-specific
proportion-congruent effects (Schmidt & Besner, 2008), a similar
pattern should emerge for item-specific proportion-congruent ef-
fects under load: Increasing demands on WM should reduce the
contingency-learning effects that are assumed to cause the char-
acteristic pattern of the item-specific proportion-congruent effect.
As a result, item-specific proportion-congruent effects, similar to
contingency-learning effects, should be reduced by increasing WM
load.

The results from our experiments are not consistent with this
prediction, however. Using vocal responding to colors, Experi-
ments 1A and 1B did yield evidence that contingency-learning and
item-specific proportion-congruent effects are alike in that they are
both unaffected by WM load. The more central message from
these results, however, is merely that the vocal responding proce-
dure fails to replicate Schmidt et al.”s (2010) original finding in the
nonconflict color identification task, possibly because vocal re-
sponding elicits such small baseline contingency learning effects
(Forrin & MacLeod, 2017; Spinelli et al., 2020) that an observable
further reduction is virtually impossible to achieve.®

Manual responding to colors (plus the addition of feedback on
each trial), however, not only increased baseline contingency-
learning effects in the nonconflict color identification task but also
successfully replicated the finding that increasing WM load re-

8 Note that because the contingency-learning effect is relatively small in
vocal responding (as shown in Experiment 1A) but a robust item-specific
proportion-congruent effect is regularly observed when this response mo-
dality is used (as shown in Experiment 1B), one might conclude that, in
vocal responding, the item-specific proportion-congruent effect might pri-
marily reflect the action of a conflict-adaptation process rather than that of
a contingency-learning process. However, the results of a recent item-
specific proportion-congruent manipulation in our lab suggest a more
cautious conclusion (Spinelli & Lupker, 2020a). In that experiment, the
design permitted us to dissociate the independent contributions of contin-
gency learning and adaptation to item-specific conflict frequency to the
item-specific proportion-congruent effect. Although a vocal response was
required, a robust contingency-learning effect emerged in that situation in
addition to a (smaller) effect of adaptation to item-specific conflict fre-
quency. Thus, although in the present Experiment 1A, a nonconflict color
identification task with vocal responding, we did not obtain a large
contingency-learning effect, contingency learning likely has some role in
the item-specific proportion-congruent effect in the Stroop task, even when
a vocal response is required (see also Hutchison, 2011).
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duces the magnitude of such effects (Experiments 2A). In contrast,
no parallel reduction of item-specific proportion-congruent effects
in the Stroop task was observed (Experiments 2B). This pattern
was obtained even when the same participants were tested in both
the nonconflict task and the Stroop task (Experiments 3A and
3B).Y

One aspect of our WM load manipulation that should be noted
is that in no case did WM load have a strong impact on the basic
Stroop congruency effect. Stroop effects have been reported to
increase when a WM load is concurrently maintained (e.g., Lavie,
2005), potentially because maintaining that load impairs individ-
uals’ ability to proactively maintain the task goal (Kalanthroff,
Avnit, Henik, Davelaar, & Usher, 2015). In the present experi-
ments, however, the basic congruency effect, if anything, tended to
decrease under higher load. An anonymous reviewer on a previous
version of this article pointed out that the failure to observe larger
congruency effects with a concurrent WM load might indicate that
our load manipulation was ineffective. Although other load ma-
nipulations might have been possible (see Footnote 5), the goal
that our manipulation was required to achieve was to impair
contingency learning, that is, the critical process that, according to
the contingency-learning account, underlies the item-specific
proportion-congruent effect in the Stroop task. As this goal was
achieved (as demonstrated by reduced contingency-learning ef-
fects under load in the nonconflict color identification task in
Experiments 2A and 3A), the fact that our load manipulation
spared the basic congruency effect in the Stroop task does not
appear to be at all problematic.

In sum, our overall pattern of results poses a challenge to the
view that congruency effects in item-specific proportion-congruent
paradigms are the result of a contingency-learning process. This
view would predict that increasing demands on WM should impair
contingency-learning and item-specific proportion-congruent ef-
fects in a similar way, a pattern the present experiments failed to
obtain.

An explanation that better accommodates the present results is
one that assumes a process other than contingency learning drives
the item-specific proportion-congruent effect in the Stroop task.
Adaptation to item-specific conflict frequency would be such a
process. According to this explanation (Blais et al., 2007; Jacoby
et al., 2003; Shedden et al., 2013), participants would learn to
associate specific words with a specific control process: mostly-
congruent words would lead to relaxed attention (as the irrelevant
dimension is typically not conflicting) whereas mostly-
incongruent words would lead to focused attention to the relevant
dimension (as the irrelevant dimension is typically conflicting).
Importantly, what the present results suggest is that WM load has
virtually no impact on participants’ ability to implement this type
of control processes. At first blush, a claim of this sort may appear
surprising, as one would expect that a concurrent WM task divert-
ing attentional resources away from the Stroop task should inter-
fere with a process that is itself attentional. However, research
within the DMC framework (Braver, 2012; Braver et al., 2007)
suggests that increasing demands on WM may only have that sort
of effect on proactive processes, that is, effortful processes that
involve sustained maintenance of task goals. In other situations,
increasing WM load may, instead, bias individuals to use reactive
processes, that is, processes that rely on the environment to reac-
tivate task goals (Burgess & Braver, 2010; Speer et al., 2003). As
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adaptation to item-specific conflict frequency would be one exam-
ple of that type of process (Gonthier et al., 2016), the claim that
WM load does not interfere with its implementation would follow.
Indeed, from this point of view, diminished WM resources should
make item-specific conflict adaptation an even more convenient
option than it is when those resources are intact.

Item-Specific Conflict Frequency, Contingency
Learning, and WM Capacity: A Not-So-Simple Story

The WM-capacity analyses of Experiments 3A and 3B are
potentially relevant in evaluating the conclusions suggested by our
WM-load manipulations. The DMC account, the account our data
appear to favor, concerns itself not only with differences in WM
resources that are induced experimentally (e.g., by use of a con-
current WM load) but also with differences in WM resources that
occur naturally across individuals (i.e., their WM capacity; Braver,
2012; see also Kane & Engle, 2003). Specifically, it suggests that
high WM-capacity individuals might be more prone to engage in
proactive control than low WM-capacity individuals. If so, in the
Stroop task, this tendency could result in less pronounced item-
specific proportion-congruent effects in high than low WM-
capacity individuals, a pattern that would most clearly emerge in
error rates rather than in latencies because an error, but not nec-
essarily an increased latency, would index participants’ inability to
successfully maintain the task goal (Kane & Engle, 2003; Ma-
cLeod, 1991).

A different set of predictions could be derived from Schmidt et
al.’s (2010) idea that contingency learning depends on limited-
capacity resources. This idea suggests that contingency learning
should be relatively impaired in individuals who possess fewer of
those resources, that is, low WM-capacity individuals. As a result,
those individuals, compared with individuals with a higher WM
capacity, should show smaller contingency-learning effects in a
nonconflict color identification task. Additionally, based on the
contingency-learning account’s idea that item-specific proportion-
congruent effects in the Stroop task really are contingency-
learning effects in disguise, item-specific proportion-congruent
effects should also be smaller in low than high WM-capacity
individuals. Notably, this prediction concerning the item-specific

2 One may object that the reason that we failed to find a significant
reduction in the item-specific proportion-congruent effect with increasing
‘WM load is that, because WM load was manipulated between subjects, our
experiments did not have enough power to detect that interaction. To
alleviate that concern, we conducted an additional set of analyses on the
combined the data from Experiments 2A and 3A and Experiments 2B and
3B (Experiment (2A vs. 3A; 2B vs. 3B) had no impact in either analysis
and was dropped as a factor). Not surprisingly, the combined analysis of
Experiments 2A and 3A revealed that increasing WM load significantly
reduced contingency-learning effects in the nonconflict color identification
task in the latencies, F(2, 265) = 14.81, MSE = 1887, p < .001, n,z, =.101,
and marginally so in the error rates, F(2, 265) = 2.52, MSE = .001, p =
.083, 11,2, = .019. However, there was no hint in the combined analysis of
Experiments 2B and 3B that WM load produced a reduction in the
item-specific proportion-congruent effect in the Stroop task, i.c., there was
no three-way interaction between congruency, item type, and WM load,
F(2,265) = 22, MSE = 4747, p = .80, nﬁ = .002 for the latencies, F(2,
265) = .93, MSE = .002, p = 40, nﬁ = .007 for the error rates. In fact,
the Bayes factors for both the latencies, BF,, = 18.29 + 3.23, and the error
rates, BF,, = 10.23 = 4.09%, indicated “strong” evidence for the absence
of the three-way interaction.
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proportion-congruent effect is quite the opposite of that derivable
from the DMC account.

Although, as noted, a previous study exists (Hutchison, 2011)
which allows an examination of these contrasting predictions,
Experiments 3A and 3B allowed for a clearer examination within
the original contingency-learning and item-specific proportion-
congruent paradigms, respectively. Partial support for the DMC
account was obtained in the extreme-groups ANOVAs reported in
Appendix A, in the form of larger items-specific proportion-
congruent effects for low than high WM-capacity individuals in
the error rates in the Stroop task and no relation between contin-
gency learning and WM capacity in either latencies or error rates
in the nonconflict color identification task—a replication of the
relevant results reported by Hutchison (2011), who used the same
type of analysis.

However, the results of our main statistical analysis technique,
one where the full range of WM capacity sampled is analyzed
within a mixed-effects model (Meier & Kane, 2013, 2015), sug-
gested a more complex story. Although this full-sample analysis,
like the extreme-groups analysis, did reveal that WM capacity had
an impact on performance overall, with faster and more accurate
responding (as well as reduced congruency effects) associated with
higher WM capacity, there was no evidence that, in the Stroop
task, WM capacity had an impact on the item-specific proportion-
congruent effect in the latencies or, most importantly, in the error
rates. That is, in this full-sample analysis, in contrast to our
extreme-groups analysis and Hutchison’s (2011) results, increas-
ing WM capacity did reduce errors overall but did not reduce the
item-specific proportion-congruent effect. There was also little
evidence in either analysis for an overall reduction in congruency
effects with higher WM capacity, a result that would have been
expected based on the idea that proactive control in high WM-
capacity individuals would help them deal with conflict more
efficiently. Essentially, although our WM-capacity results are
clearly incompatible with the contingency-learning account, they
offer no strong support for the DMC account either.

The contingency-learning account also gained little support
from the results of the nonconflict color identification task. As
noted, Schmidt et al.’s (2010) idea that the amount of limited-
capacity resources available determines the magnitude of
contingency-learning effects leads to the expectation that, in a
nonconflict color identification task, contingency-learning effects
should be smaller in low WM-capacity individuals (i.e., individu-
als with fewer WM resources) than high WM-capacity individuals
(i.e., individuals with more WM resources). As revealed by the
full-sample analysis (but not the extreme-groups analysis), this
pattern (larger contingency-learning effects with higher WM ca-
pacity) did occur in a portion of the data, for participants who
performed the nonconflict color identification task following the
Stroop task. However, the opposite pattern (smaller contingency-
learning effects for higher WM-capacity individuals) was found in
the group of participants who completed the nonconflict color
identification task first.

These results suggest that a complete explanation of the relation
between contingency learning and WM capacity is unlikely to be
found in the original contingency-learning account (e.g., Schmidt
et al., 2010), which would seem to require additional notions in
order to explain the pattern of results that emerged in our full-
sample analysis. These notions could include, for example, the
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idea that contingency learning might be modulated by the amount
of attention individuals allocate to the process of making sure that
stimulus-response mappings are being correctly implemented.
That process, a monitoring process, could certainly divert atten-
tional resources away from the process of learning color-word
contingencies. Therefore, to the extent that participants must en-
gage in such a process, doing so would reduce their opportunity to
learn the relevant contingencies for the stimuli being used in the
experiment in a similar way that maintaining a WM load would
(Spinelli et al., 2020). In an attempt to explain the contrasting
patterns obtained for participants who completed the nonconflict
color identification task as the first task versus the second task
(within the contingency-learning framework), it could be assumed
that the conditions under which individuals may feel a weaker
versus stronger need to engage in this monitoring process could
vary depending on the WM capacity of the individual and/or the
amount of practice received in the task. For example, high WM-
capacity individuals may feel a strong need to engage in the
monitoring process initially, leaving little opportunity to learn the
contingencies in the task, but not after an entire block of practice,
a situation in which they could relax the monitoring process and be
better able to pick up on those contingencies.

These hypotheses are, of course, purely speculative at this point.
In general, from the present dataset, it would appear incautious to
draw strong conclusions about the nature of the relation between
WM -capacity and either item-specific proportion-congruent ef-
fects or contingency-learning effects. While, overall, the WM-
capacity analyses we conducted do show some consistency with
the previous studies (Hutchison, 2011; see also Kane & Engle,
2003) when using the same analysis (i.e., an extreme-groups
analysis) used in those studies, they certainly depict a less clear
situation than the WM-load analyses do. Part of the reason for this
lack of clarity might be that our experiments were relatively
underpowered for a WM-capacity analysis, both in terms of the
number of items used and the size of the sample tested (a concern
that is even more serious for the nonconflict color identification
task, where the order effect essentially cuts the sample in half).
The fact that participants received few practice trials also suggests
that, in all likelihood, many participants performed the experi-
ments while they were still in the process of learning the required
stimulus-response mappings. As a result, it is not clear whether
any differences related to WM capacity in this situation would be
due to this learning process or to variables being manipulated.
Finally, it should also be noted that the population of university
students might offer a restricted range of WM capacity, making it
hard to detect a WM-capacity effect, especially when examining a
continuous measure of WM capacity as opposed to using an
extreme-groups comparison. Better powered and better designed
investigations are needed to clarify whether and how WM capacity
influences adaptation to item-specific conflict-frequency and con-
tingency learning.

Challenges and Conclusions

The essential message of the present results is that there is a
dissociation between contingency learning and item-specific
proportion-congruent effects. We interpret these data as suggesting
that the two effects reflect qualitatively different phenomena, with
the item-specific proportion-congruent effect being mainly a man-
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ifestation of a reactive control process of adaptation to item-
specific conflict frequency rather resulting completely from a
contingency-learning process.

Importantly, since the beginning of the debate on conflict ad-
aptation spurred by the contingency-learning account (Schmidt &
Besner, 2008), we are among the first to argue for a role of
adaptive control processes in the original, two-item set item-
specific proportion-congruent manipulation (Jacoby et al., 2003;
for other evidence in support of this position, see Hutcheon &
Spieler, 2014; Shedden et al., 2013). We are also aware that this
position faces the difficulty of reconciling the present results
favoring a conflict-adaptation explanation with previous studies
supporting a contingency-learning explanation (Hazeltine &
Mordkoff, 2014; Schmidt, 2013a). In those studies, responses to
mostly-congruent and mostly-incongruent words presented in in-
congruent colors, colors that the two types of words appeared in
equally often, did not differ from one another, in contrast with the
conflict-adaptation prediction that mostly-incongruent incongruent
words should be responded to faster than mostly-congruent incon-
gruent words due to the fact that a conflict-adaptation process was,
presumably, being implemented in the mostly-incongruent condi-
tion.

It is important to note, however, that the design of those studies
is different from Jacoby et al.’s (2003) paradigm in potentially
important ways. In the two-item set used in Jacoby et al.’s (2003)
item-specific proportion-congruent manipulation (and in the pres-
ent experiments), mostly-congruent words appeared in colors that
are also mostly-congruent colors, and mostly-incongruent words
appeared in colors that are also mostly-incongruent colors. For
example, in the version illustrated in Table 2, RED and BLUE
function as mostly-congruent words and the red and blue colors
also appear mainly with congruent words. Similarly, GREEN and
YELLOW are mostly-incongruent words and the green and yellow
colors appear mainly with incongruent words. This characteristic
of the design might be relevant given recent findings by Bugg et al.
(2011; Bugg & Hutchison, 2013) that not only the irrelevant
dimension (i.e., the word) but also the relevant dimension (i.e., the
color) can function as a signal for conflict frequency. Thus, it is
possible that participants can use both word-specific and color-
specific information to predict conflict frequency and adapt to it
(although in Bugg et al.’s, 2011 view, there are constraints on the
use of color-specific information: Bugg et al., 2011; Bugg &
Hutchison, 2013).

What is most relevant to note for the present purposes is that
word-specific and color-specific conflict frequency provide com-
patible information in Jacoby et al.’s (2003) two-item set para-
digm. For example, the item GREEN,.,, represents both a
mostly-incongruent word and a mostly-incongruent color, thus
providing a strong bias toward word inhibition. In contrast, word-
specific and color-specific conflict frequency provide inconsistent
information in some of the cells in Schmidt’s (2013a) and Hazel-
tine and Mordkoff’s (2014) four-item set designs. For example, in
Schmidt’s experiment, the critical comparison for probing conflict
adaptation involved mostly-congruent incongruent words and
mostly-incongruent incongruent words matched in terms of the
frequency that they occurred in the presented (incongruent) color.
However, Schmidt’s analysis is atypical in that it is based on
stimuli that combine words that frequently appear in incongruent
colors, that is, mostly-incongruent words, and colors that fre-
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quently appear with congruent words, that is, mostly-congruent
colors. For example, RED and YELLOW were words associated
with frequent conflict (i.e., mostly-incongruent words), however,
in the crucial conditions in that experiment, they appeared in both
blue and green, colors that were associated with infrequent conflict
(i.e., most-congruent colors). As such, it is impossible to tell
whether and how the contrast between color-specific and word-
specific information was resolved for those items. Thus, the com-
parison between mostly-congruent and mostly-incongruent incon-
gruent words in Schmidt’s and Hazeltine and Mordkoft’s (2014)
experiments may be one which is not diagnostic for adjudicating
between conflict-adaptation and contingency-learning accounts of
the item-specific proportion-congruent effect (see also Spinelli &
Lupker, 2020a).

Another challenge that our position faces is reconciling the
present findings with previous results coming from a control
perspective (Bugg et al., 2011; Bugg & Hutchison, 2013), results
that, while providing support for a role of control in the item-
specific proportion-congruent effect in some circumstances, found
no support for control in the two-item set design that we used. In
this regard, Bugg and Hutchison’s (2013) Experiment 3 is of
particular interest. In this experiment, Bugg and Hutchison (2013)
used both a two-item and a four-item set design of the item-
specific proportion-congruent manipulation. In the two-item set
design, each word appeared in two colors (one congruent and one
incongruent), as in Jacoby et al. (2003) and the present experi-
ments; in the four-item set design, each word appeared in four
colors (one congruent color and three incongruent colors). The
critical difference between these two versions of the item-specific
proportion-congruent manipulation is that while a high-
contingency (i.e., more frequent) color existed for mostly-
incongruent words in the two-item set design, no high-contingency
color existed for mostly-incongruent words in the four-item set
design because each word appeared equally frequently in each of
the four colors (e.g., RED appeared in red 25% of the time and in
each of the three incongruent colors 25% of the time; note that, by
necessity, a high-contingency color existed for mostly-congruent
words in both designs).

In both designs, an item-specific proportion-congruent effect
emerged (i.e., as expected, mostly-incongruent words produced a
smaller congruency effect than the corresponding mostly-
congruent words), a result that, per se, is compatible with both a
contingency-learning and a conflict-adaptation mechanism. What
was crucial to adjudicating the process underlying the item-
specific proportion-congruent effect, however, was the pattern of
results emerging in a new manipulation introduced in the final
block of the experiment. In this final block, a new set of colors was
added that had not been used before in the experiment, and both
mostly-congruent and mostly-incongruent words were presented in
those incongruent colors. The rationale for this manipulation was
that, if participants learn to focus attention to the color when
mostly-incongruent words are presented in the first part of the
experiment (i.e., if they apply a conflict-adaptation process), those
words should produce less interference even when presented in
new incongruent colors than when mostly-congruent words are
presented in the first part of the experiment. In contrast, if partic-
ipants learn to associate words with their most likely response in
the first part of the experiment (i.e., if they apply a contingency-
learning process), no advantage for mostly-incongruent words
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should occur when new incongruent colors are introduced because
participants have acquired no information that would allow them
to manage conflict more effectively with those words.

What Bugg and Hutchison (2013) found was that mostly-
incongruent words did produce shorter latencies than mostly-
congruent words when presented in the new incongruent colors in
the final block, but only in the four-item version of the task (no
difference was observed in the two-item set version). For example,
the incongruent color brown (a color used only in the final block
of the experiment) was named faster if that color appeared in a
mostly-incongruent word than if it appeared in a mostly-congruent
word, but only for participants who completed the four-item set
version of the experiment initially. Based on these results, Bugg
and Hutchison (2013) concluded that distinct processes are in-
volved in the two-item and the four-item set design: In the four-
item set design, conflict adaptation would be the dominant process,
as demonstrated by the fact that, for the new colors in the final
block of their experiment, participants imported previously ac-
quired information about item-specific conflict frequency. In con-
trast, in the two-item set design, contingency learning would be the
dominant process, as demonstrated by the fact that no such transfer
of information was observed for the new colors in the final block
in that situation. Yet, in the present experiments, we found good
evidence in support of conflict adaptation playing an important
role in the two-item set design. What could be the cause for this
inconsistency?

A possible explanation is that in Bugg and Hutchison’s (2013)
manipulation, the introduction of new colors in the final block may
have discouraged individuals from transferring knowledge about
item-specific conflict frequency acquired from the set of stimuli
appearing in the first part of the experiment. If so, the failure to
observe a transfer effect in the final block (i.e., there was not less
interference for mostly-incongruent than mostly-congruent words
on the new incongruent colors) cannot be used to conclude that no
conflict-adaptation process had been used in the first part of the
experiment. It is possible that conflict adaptation was engaged in
both the version of the task that produced transfer in Bugg and
Hutchison’s (2013) paradigm (e.g., the four-item set version) and
the version of the task that did not produce transfer (e.g., the
two-item set version), with the presence of transfer depending on
more marginal factors.

One possibility, for example, is that participants in a two-
item set design are more likely than participants in a four-item
set design to become consciously aware of the item-specific
proportion-congruent manipulation because they are exposed to
a more limited number of stimuli (8 color-word combinations
in a two-item set design vs. 16 color-word combinations in a
four-item set design). Upon noticing the new colors in the final
block, participants in the two-item set version may deliberately
decide to reset their control settings early in that block, thus
purging any item-specific conflict information that they had
previously acquired, albeit without becoming aware of having
done so. The situation might be different in a four-item set
design because, in that scenario, item-specific conflict fre-
quency information may be more frequently learned outside the
focus of awareness. Because item-specific conflict frequency
information is acquired in a more subtle manner, participants
may not feel particularly compelled to reset their control set-
tings in the final block, with item-specific conflict frequency
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maintaining some impact on performance even for the new
colors. Although this hypothesis is purely speculative, it would
seem to provide a reasonable explanation for the inconsistency
between Bugg and Hutchison’s (2013) data and ours (see also
Schmidt, 2014, 2019, for another explanation of Bugg and
Hutchison’s, 2013 data which assumes that the transfer effect
observed in the final block of the four-item set version has, in
fact, nothing to do with conflict adaptation).

Clearly, further research is needed to examine more closely the
contribution of contingency learning and item-specific conflict
adaptation to the item-specific proportion-congruent effect. What
the present results suggest, however, is that there might be more to
adaptation to item-specific conflict frequency than supporters of
the contingency-learning and the control accounts currently be-
lieve. The reactive use of associations between words (and/or
colors) and their appropriate control setting, in addition to, or as an
alternative to, the use of associations between words and motor
responses, might be an important cognitive tool in managing
item-specific conflict frequency.
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Appendix A

WM-Capacity Analysis—Extreme-Groups ANOVA

The data for participants in the no-load condition of Experi-
ments 3A and 3B were analyzed with an extreme-groups ANOVA
based on participants’ means in each condition in addition to the
full-sample, mixed-effects analysis based on unaggregated data
reported in the main text. As in Hutchison (2011), the extreme
groups were determined with a quartile split based on the com-
posite score of WM capacity obtained from the complex span
tasks. The first quartile (composed of 24 participants) was classi-
fied as the low WM-capacity group and the last quartile (composed
of another 24 participants) was classified as the high WM-capacity
group. The ANOVA was conducted with the same factors as the
fixed effects of the mixed-effects analysis, except that span score
was replaced with WM capacity. To preview the results, order had
no impact on the most relevant interactions, that is, the interaction
between contingency and WM capacity in Experiment 3A and the
interaction between congruency, item type, and WM capacity in
Experiment 3B. Thus, we present the mean RTs and error rates for
the four quartiles (the first and the last quartiles plus the middle
two quartiles) in Appendices B and C for Experiments 3A and 3B,
respectively, without splitting the data by order.

Experiment 3A

RTs

Contingency (high-contingency faster than low-contingency)
was the only significant effect, F(1, 44) = 50.36, MSE = 1991,
p <.001,m; = .534. Although individuals with high WM capacity
were numerically faster than individuals with low WM capacity,
WM capacity was not statistically significant, F(1, 44) = .52,
MSE = 12,610, p = 47, 'r]f, = .012. In addition, replicating
Hutchison (2011) (see Footnote 6), WM capacity did not interact
with contingency, F(1, 44) = .07, MSE = 1991, p = .80, m} =
.001, indicating equivalent contingency-learning effects for the
low (63 ms) and the high WM capacity groups (67 ms). Bayesian
analyses revealed that there was “moderate” evidence for the
absence of the interaction, BF,, = 3.31 = 3.13%.

Error Rates

There was a main effect of contingency (high-contingency more
accurate than low-contingency), F(1, 44) = 18.52, MSE = .001,
p <.001, m} = .296, and WM capacity (high WM-capacity group
more accurate than low WM-capacity group), F(1, 44) = 7.66,
MSE = .002, p = .008, 'q,z, = .148. There was no interaction
between contingency and WM capacity, however, F(1, 44) = .84,
MSE = .001, p = 37, 2 = .019, indicating that the contingency-
learning effects for the low (3.4%) and high WM capacity groups
(2.1%) were equivalent. In the Bayesian analyses, the evidence for
the absence of this interaction, however, was only “anecdotal,”
BF,, = 2.18 * 6.61%.

Experiment 3B
RTs

There was a main effect of congruency (congruent faster than
incongruent), F(1, 44) = 179.64, MSE = 5237, p < .001, ‘qf, =
.803, and an interaction between congruency and item type, F(1,
44) = 39.57, MSE = 6021, p < .001, m} = .473. The interaction
indicated an item-specific proportion-congruent effect, with a
larger congruency effect for mostly-congruent items (211 ms) than
for mostly-incongruent items (70 ms). Although the high WM-
capacity group was numerically faster than the low WM-capacity
group, WM capacity did not approach statistical significance, F(1,
44) = 1.44, MSE = 62,296, p = .237, m} = .032. In addition, WM
capacity did not modulate the pattern of item-specific proportion-
congruent effects, that is, there was no three-way interaction
between congruency, item type, and WM capacity, F(1, 44) = .33,
MSE = 6021, p = .571,m} = .007. The Bayes factor, BF,,; = 3.01
* 7.38%, indicated “moderate” evidence for the absence of this
three-way interaction. Finally, there was a marginal three-way
interaction between congruency, order, and WM capacity, F(I,
44) = 3.98, MSE = 5237, p = .052, m3 = .083. This interaction
indicated a numerical tendency for high WM-capacity participants
to show overall smaller congruency effects than low WM-capacity
participants, but only for participants who did Experiment 3B
following Experiment 3A.
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Error Rates

There were main effects of congruency (congruent more accu-
rate than incongruent), F(1, 44) = 21.96, MSE = .003, p < .001,
M2 = .333, WM capacity (high WM-capacity group more accurate
than low WM-capacity group), F(1, 44) = 15.56, MSE = .005,
p <.001,7m; = .261, and a marginal effect of item type, F(1, 44) =
3.50, MSE = .003, p = .068, m3 = .074, indicating a tendency for
mostly-incongruent items to be more accurate than mostly-
congruent items. WM capacity interacted with order, F(1, 44) =
5.51, MSE = .005, p = .023, m> = .111, indicating that WM
capacity had a larger impact on error rates for participants who did
Experiment 3B first (low WM-capacity: 7.2%; high WM-capacity:
2.2%) than for those who did Experiment 3B following Experi-
ment 3A (low WM-capacity: 4.2%; high WM-capacity: 2.9%).
The Congruency X Item Type interaction, with larger congruency
effects for mostly-congruent items than for mostly-incongruent
items, was marginal, F(1, 44) = 3.73, MSE = .003, p = .060, ’T],Z, =
.078. Congruency marginally interacted with WM capacity as well,
F(1,44) = 3.88, MSE = .003, p = .055, m = .081, indicating that
congruency effects tended to be smaller for the high WM-capacity
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group. Most importantly, these two-way interactions were quali-
fied by a three-way interaction between congruency, item type,
and WM capacity, F(1, 44) = 5.25, MSE = .003, p = .027, T],z, =
.107.

To explore the three-way interaction, low and high WM-
capacity groups were analyzed separately. In the low WM-capacity
group, there was a main effect of congruency, F(1, 22) = 14.80,
MSE = .005, p = .001, 2 = .402, and a Congruency X Item Type
interaction, F(1, 22) = 5.42, MSE = .005, p = .030, 7 = .198.
This interaction indicated a regular item-specific proportion-
congruent effect, with a larger congruency effect for mostly-
congruent items (8.5%) than for mostly-incongruent items (1.9%).
In the high WM-capacity group, on the other hand, the only
significant effect was that of congruency, F(1, 22) = 7.34, MSE =
.002, p = .013, T],Z, = .250, with no evidence of an item-specific
proportion-congruent effect. Indeed, the congruency effect for
mostly-congruent items (2%) was slightly smaller than the con-
gruency effect for mostly-incongruent items (2.6%). This pattern
of results is also a replication of Hutchison’s (2011) results,
although it is not supported by the results of the full-sample
analysis (see main text).

Appendix B

Mean RTs and Error Rates (and Corresponding Standard Errors) for Low and High WM-Capacity Groups in
Experiment 3A—Manual Nonconflict Color Identification Task

Contingency RTs Error rates

Low WM capacity

High 657 (16) 2.9(.7)

Low 720 (18) 6.3(.9)

Contingency effect 63 34
Medium-low WM

capacity

High 726 (13) 1.7 (4)

Low 801 (18) 2.5(7)

Contingency effect 75 8
Medium-high WM

capacity

High 635 (14) 1.6 (4)

Low 696 (20) 1.7 (.6)

Contingency effect 61 1
High WM capacity

High 637 (15) 1.3(.3)

Low 704 (20) 34(9)

Contingency effect 67 2.1

Note. WM = working memory; RTs = reaction times.
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Appendix C

Mean RTs and Error Rates (and Corresponding Standard Errors) for Participants in the Four WM-Capacity
Quartiles in Experiment 3B—Manual Stroop Task

RTs Error rates
Mostly-congruent Mostly-incongruent Mostly-congruent Mostly-incongruent
Congruency items items items items

Low WM capacity

Congruent 702 (25) 761 (32) .027 (.008) .039 (.011)

Incongruent 918 (35) 844 (30) 112 (.024) .058 (.012)

Congruency effect 216 83 .085 .019
Medium-low WM

capacity

Congruent 742 (23) 817 (31) .015 (.006) .013 (.008)

Incongruent 902 (34) 876 (29) .048 (.014) .027 (.008)

Congruency effect 160 59 .033 014
Medium-high WM

capacity

Congruent 660 (19) 750 (30) .011 (.005) .042 (.021)

Incongruent 834 (27) 798 (25) .057 (.016) .034 (.010)

Congruency effect 174 48 .046 —.008
High WM capacity

Congruent 666 (21) 721 (27) .015 (.006) .007 (.005)

Incongruent 874 (36) 777 (25) .035 (.012) .033 (.008)

Congruency effect 208 56 .020 .026

Note. WM = working memory; RTs = reaction times.
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